![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Dimension of the Frontier of Planar Brownian Motion
|
Gregory F. Lawler, Duke University |
Abstract
Let $B$ be a two dimensional Brownian motion and let the frontier
of $B[0,1]$ be defined as the set of all points in $B[0,1]$ that are
in the closure of the unbounded connected component of its complement.
We prove that the Hausdorff dimension of the frontier equals
$2(1 - alpha)$ where $alpha$ is an exponent for Brownian motion
called the two-sided disconnection exponent. In particular, using an
estimate on $alpha$ due to Werner, the Hausdorff dimension is greater
than $1.015$.
|
Full text: PDF
Pages: 29-47
Published on: March 10, 1996
|
Bibliography
-
Bishop, C., Jones, P., Pemantle, R., and Peres, Y.
(1995).
The dimension of the Brownian frontier is greater than 1, preprint.
-
Burdzy, K. and Lawler, G.
(1990). Non-intersection exponents for
random walk and Brownian motion. Part II: Estimates and applications to
a random fractal. Ann. Probab. 18 981--1009.
Math. Review 91g:60097
-
Burdzy, K., and San Martin, J.
(1989).
Curvature of the convex hull of planar Brownian motion
near its minimum point. Stoch. Proc. Their Appl. 33 89-103.
exponent for random walk intersections. J. Stat. Phys. 56 1--12.
Math. Review 91e:60233
-
Falconer, K.
(1990).
Fractal Geometry: Mathematical Foundations and Applications.
Wiley
Math. Review 92j:28008
-
Kaufman, R. (1969). Une propriete metrique
du mouvement brownien. C. R. Acad. Sci., Paris 268 727-728.
Math. Review 39:#2219
-
Lawler, G.
(1996). Hausdorff dimension of cut points for Brownian motion.
Electron. J. Probab. 1, paper no.
2, pp. 1-20.
-
Mandelbrot, B.
(1983). The Fractal Geometry of Nature.
. W. H. Freeman.
Math. Review 84h:00021
-
Puckette, E. and Werner, W.
(1995). Simulations and conjectures for disconnection exponents, preprint.
-
Werner, W.
(1995). An upper bound to the disconnection exponent for two-dimensional
Brownian motion. Bernoulli 1, 371-380.
-
Werner, W.
(1996). Bounds for disconnection exponents.
Electron.
Comm. Probab. 1,
paper no. 4, pp. 19-28.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|