![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Boundary Crossings of Brownian Motion
|
Enkelejd Hashorva, University of Bern, Switzerland |
Abstract
Let B be a standard Brownian motion and let b_gamma be a piecewise
linear continuous boundary function. In this paper we obtain an exact asymptotic
expansion of P{ B(t)< b_gamma(t), forall tin [0,1]} provided
that the boundary function satisfies lim_{gamma to infty} b_gamma(t^*)=
-infty for some t^*in (0,1].
|
Full text: PDF
Pages: 207-217
Published on: October 3, 2005
|
Bibliography
-
M. Abundo. Some conditional crossing results of Brownian motion over
a piecewise linear boundary. Statist. Probab. Lett. 58 (2002),
no. 2, 131-145. Math.
Review 2003h:60117
-
L. Benghin, E. Orsingher. On the maximum of the generalised Brownian
Bridge. Liet. Matem. Rink 39 (1999), no. 2, 200-213 Math.
Review 2001c:60057
-
W. Bischoff, E. Hashorva, J. Huesler, F. Miller. Asymptotics of a boundary
crossing probability of a Brownian bridge with general trend. Methodol.
Comput. Appl. Probab. 5 (2003a), no. 3, 271-287. Math.
Review 2004j:60055
-
W. Bischoff, E. Hashorva, J. Huesler, F. Miller. Exact asymptotics for
boundary crossings of the Brownian bridge with trend with application to
the Kolmogorov test. Ann. Inst. Statist. Math. 55 (2003b),
no. 4, 849-864. Math.
Review 2004i:60115
-
W. Bischoff, E. Hashorva, J. Huesler, F. Miller. On the power of the Kolmogorov
test to detect the trend of a Brownian bridge with applications to a change-point
problem in regression models. Statist. Probab. Lett. 66 (2004),
no. 2, 105-115. Math.
Review 2004m:60074
-
A. Janssen, M. Kunz. Brownian type boundary crossing probabilities for
piecewise linear boundary functions. Comm. Statist. Theory Methods 33,
(2004), no. 7, 1445-1464. Math.
Review 2005j:60077
-
M. Ledoux. Isoperimetry and Gaussian analysis. Lectures on probability
theory and statistics. Lecture Notes in Math. 1648, (1996),
Springer. Math.
Review 99h:60002
-
M. Lifshits, Z. Shi. The first exit time of the Brownian motion form
a parabolic domain. Bernulli 8 (2002), no. 6, 745-765. Math.
Review 2004d:60213
-
A. Novikov, V. Frishling, N. Kordzakhia. Approximations of boundary crossing
probabilities for a Brownian motion. J. Appl. Probab. 36 (1999),
1019-1030. Math.
Review 2001f:60090
-
K. Poetzelberger, L. Wang. Boundary crossing probability for Brownian motion.
J. Appl. Probab. 38 (2001), 152-164. Math.
Review 2002a:60138
-
T.H. Scheike. A boundary crossing result for Brownian motion. J. Appl.
Probab. 29 (1992), 448-453. Math.
Review 93e:60166
-
L. Wang, K. Poetzelberger. Boundary crossing probability for Brownian
motion and general boundaries. J. Appl. Probab. 34 (1997),
54-65. Math.
Review 97h:60042
-
Varadhan, S.R.S. Large deviations and applications. S.I.A.M. Philadelphia.
CBMS-NSF Regional Conference Series in Applied Mathematics, 46. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.
Math.
Review 86h:60067b
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|