![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Brownian Excursion Conditioned on Its Local Time
|
David J. Aldous, University of California, Berkeley |
Abstract
For a function $ell$ satisfying suitable integrability
(but not continuity) requirements,
we construct a process $(B^ell_u, 0 leq u leq 1)$
interpretable as Brownian excursion conditioned to have
local time $ell(cdot)$ at time $1$.
The construction is achieved by first defining a non-homogeneous version
of Kingman's coalescent and then applying the
general theory
in Aldous (1993) relating excursion-type processes to
continuum random trees.
This complements work of Warren and Yor (1997) on the
Brownian burglar.
|
Full text: PDF
Pages: 79-90
Published on: September 22, 1998
|
Bibliography
-
Aldous, D.J. (1991),
The continuum random tree II: an overview.
In M.T. Barlow and N.H. Bingham, editors, Stochastic Analysis,
23-70. Cambridge University Press.
Math. Review 93f:60010
-
Aldous, D.J. (1993),
The continuum random tree III.
Ann. Probab. 21, 248-289.
Math. Review 94c:60015
-
Bertoin, J. and Pitman, J. (1994),
Path transformations connecting Brownian bridge, excursion and
meander.
Bull. Sci. Math. 118, 147-166.
Math. Review 95b:60097
-
Biane, P. and Yor, M. (1987),
Valeurs principales associees aux temps locaux Browniens.
Bull. Sci. Math. (2) 111, 23-101.
Math. Review 88g:60188
-
Cremers, H. and Kadelka, D. (1986),
On weak convergence of integral functions of stochastic processes
with applications to processes taking paths in L(p,E).
Stochastic Process. Appl. 21, 305-317.
Math. Review 87h:60071
-
Donnelly, P. (1986),
A genealogical approach to variable population size models in
population genetics.
J. Appl. Probab. 23, 283-296.
Math. Review 88a:92011
-
Donnelly, P. and Kurtz, T.G.
Particle representations for measure-valued population models.
1997.
Preprint.
Math. Review number not available.
-
Drmota, M. and Gittenberger, B. (1997),
On the profile of random trees.
Random Structures and Algorithms 10, 421-451.
Math. Review number not available.
-
Le Gall, J. -F. (1991),
Brownian excursions, trees and measure-valued branching processes.
Ann. Probab. 19, 1399-1439.
Math. Review 93b:60195
-
Griffiths, R.C. and Tavare, S. (1994),
Sampling theory for neutral alleles in a varying environment.
Philos. Trans. Roy. Soc. London Ser. B 344, 403-410.
Math. Review number not available.
-
Kingman. J.F.C. (1982),
Exchangeability and the evolution of large populations.
In G. Koch and F. Spizzichino, editors, Exchangeability in
Probability and Statistics, pages 97-112. North-Holland.
Math. Review 84b:60095
-
Kingman, J.F.C. (1982),
The coalescent.
Stochastic Process. Appl. 13, 235-248.
Math. Review 84a:60079
-
Perkins, E.A. (1991),
Conditional Dawson-Watanabe processes and Fleming-Viot
processes.
In Seminar in Stochastic Processes 1991, pages 142-155.
Birkhauser.
Math. Review 93h:60078
-
Takacs, L. (1995),
Brownian local times.
J. Appl. Math. Stochastic Anal. 8, 209-232, 1995.
Math. Review 96f:60137
-
Tavare, S. (1984),
Line-of-descent and genealogical processes and their applications in
population genetics models.
Theoret. Population Biol. 26, 119-164.
Math. Review 86f:92017
-
Warren, J. and Yor, M. (1998),
The Brownian burglar: conditioning Brownian motion by its local time
process.
In J. Azema, M. Emery, M. Ledoux, and M. Yor, editors,
Seminaire de Probabilites XXXII, pages 328-342. Springer.
(Lecture Notes in Math. 1686.)
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|