 |
|
|
| | | | | |
|
|
|
|
|
Random walks conditioned to stay in Weyl chambers of type C and D
|
Wolfgang König, Technical University Berlin Patrick Schmid, Universität Leipzig |
Abstract
We construct the conditional versions of a multidimensional random walk given that it does not leave the Weyl chambers of type C and of type D, respectively, in terms of a Doob h-transform. Furthermore, we prove functional limit theorems for the rescaled random walks. This is an extension of recent
work by Eichelsbacher and Koenig who studied the analogous conditioning for the Weyl chamber of type A. Our proof follows recent work by Denisov and Wachtel who used martingale properties and a strong approximation of random walks by
Brownian motion. Therefore, we are able to keep minimal moment assumptions. Finally, we present an alternate function that is amenable to an h-transform in the Weyl chamber of type C.
|
Full text: PDF
Pages: 286-296
Published on: July 23, 2010
|
Bibliography
-
A. Altland, M.R. Zirnbauer.
Random matrix theory of a chaotic Andreev quantum dot.
Phys. Rev. Lett. 76 (1996), 3420-3423.
Math. Review number not available.
-
A. Altland, M.R. Zirnbauer.
Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structure.
Phys. Rev. B 55 (1997), 1142-1161.
Math. Review number not available.
-
J. Baik, T. Suidan.
Random matrix central limit theorems for non-intersecting random walks.
Ann. Probab. 35 (2007), 1807-1834.
2349576
-
J. Bertoin, R.A. Doney.
On conditioning a random walk to stay nonnegative.
Ann. Probab. 22 (1994), 2152-2167.
1331218
-
T. Bodineau, J. Martin.
A universality property for last-passage percolation paths close to the axis.
Electron. Comm. in Probab. 10, (2005), 105-112.
2150699
-
A. Borodin, P.L. Ferrari, M. Pr"ahofer, T. Sasamoto, J. Warren.
Maximum of Dyson Brownian motion and non-colliding systems with a boundary.
Electron. Comm. in Probab. 14, (2009) 486-494.
2559098
-
D. Denisov, V. Wachtel.
Conditional limit theorems for ordered random walks.
Electron. J. Probab. 15, (2010), 292-322.
Math. Review number not available.
-
J.L. Doob.
Classical potential theory and its probabilistic counterpart
(1984) New York: Springer-Verlag.
0731258
-
F.J. Dyson.
A Brownian-motion model for the eigenvalues of a random matrix.
J. Math. Phys. 3 (1962), 1191-1198.
0148397
-
P. Eichelsbacher, W. Koenig.
Ordered random walks.
Electron. J. Probab. 13 (2008), 1307-1336.
2430709
-
D.J. Grabiner.
Brownian motion in a Weyl chamber, non-colliding particles, and random matrices.
Ann. Inst. H. Poincare Probab. Statist. 35(2) (1999), 177-204.
1678525
-
M. Katori, T. Tanemura.
Symmetry of matrix-valued stochastic processes and non-colliding diffusion particle systems.
J. Math. Phys. 45 (2004), 3058-3085.
2077500
-
S.P. Karlin, G. McGregor.
Coincidence probabilities.
Pacif. J. Math. 9 (1959), 1141-1164.
0114248
-
W. Koenig, N. O'Connell, S. Roch.
Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles.
Elec. Jour. Probab. 7 (2002), 1-24.
1887625
-
P. Major.
The approximation of partial sums of rv's.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976), 213-220.
0415743
-
N. O'Connell, M. Yor.
A representation for non-colliding random walks.
Elec. Comm. Probab. 7 (2002), 1-12.
1887169
-
N.T. Varopoulos.
Potential theory in conical domains.
Math. Proc. Camb. Phil. Soc. 125 (1999), 335-384.
1643806
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|