![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Further Exponential Generalization of Pitman's 2M-X Theorem
|
Fabrice Baudoin, Université Paris 6 et Paris 7 |
Abstract
We present a class of processes which enjoy an exponential
analogue of Pitman's 2M-X theorem, improving hence some works of H. Matsumoto and
M. Yor.
|
Full text: PDF
Pages: 37-46
Published on: January 11, 2002
|
Bibliography
-
O. Barndorff-Nielsen (1978),
Hyperbolic distributions and distributions on hyperbolae. Scand.
J. Stat. 5, 151-157.
Math.
Review 80a:60016
-
F. Baudoin (2001),
Conditionings on the Wiener space: Theory, Examples and Apllication to Finance
To appear in Stochastic processes and their Applications.
Math. Review number not available
-
F. Baudoin (2001),
Bessel process with random drift and the /X transformation. Preprint,
Math. Review number not available
-
J.M.C. Clark (1970),
The representation of functionals of Brownian motion by stochastics integrals.
Ann. Math. Stat. 41,1282-1295.
Math.
Review 42#5336
-
D. Dufresne (2001),
An affine property of the reciprocal Asian option process.
Osaka J. Math. 38,379-381.
CMP 1833627
-
C. Donati-Martin, H. Matsumoto, M. Yor (2001),
Some absolute continuity relationships for certain anticipative
transformations of geometric Brownian motions.
Publ. RIMS Kyoto 37,295-326.
CMP 1855425
-
N. N. Lebedev (1972),
Special Functions and their Applications.
Dover New-York
Math.
Review 50#2568
-
H. Matsumoto and M. Yor (1999),
A version of Pitman's 2M-X theorem for
geometric Brownian motions. C.R. Acad. Sci. Paris 328, Série
I, 1067-1074.
Math.
Review 2000d:60134
-
H. Matsumoto and M. Yor (2001),
A relations hip between Brownian motions with Opposite drifts
via Certain Ennlargements of the Brownian filtration. Osaka J. Math
38,
383-398.
CMP 1833628
-
H. Matsumoto and M. Yor (2000),
An analogue of Pitman's 2M-X theorem for Exponential Wiener functionals,
Part I: A time-inversion approach. Nagoya J. Math
159,
125-166.
Math.
Review 2001j:60145
-
H. Matsumoto and M. Yor (2001),
An analogue of Pitman's 2M-X theorem for Exponential Wiener functionals,
Part II: The role of the generalized inverse Gaussian laws. Nagoya J. Math
162,
65-86.
CMP 1836133
-
H. Matsumoto and M. Yor (1999),
Some changes of probabilities related to a geometric Brownian motion
version of Pitman's 2M-X theorem. Elect. Comm. in Prob.
4,
15-23.
Math.
Review 2000e:60130
-
P.A. Meyer (1994),
Sur une transformation du mouvement brownien due à Jeulin et Yor.
Sem. Prob. XXVIII, Springer LNM 1583, 98-101.
Math.
Review 96b:60215
-
J.W. Pitman and M. Yor (1980),
Processus de Bessel, et mouvement brownien, avec drift. C.R. Acad. Sci.
Paris Serie I 291, 151-153.
Math.
Review 82b:60105
-
J.W. Pitman and M. Yor (1981),
Bessel process and infinitely divisible laws. Stochastics Integrals,
Springer-verlag LNM 851, 285-370.
Math.
Review 82j:60149
-
D. Revuz and M. Yor (1999),
Continuous Martingales and Brownian motion, 3rd edition.
Springer-Verlag Berlin
Math.
Review 2000h:60050
-
L.C.G. Rogers (1981),
Characterizing all diffusions with the 2M-X property.
Ann. Prob. 9, 561-572.
Math.
Review 82j:60150
-
P. Vallois (1991),
La loi gaussienne inverse généralisée comme premier ou dernier
temps de passage de diffusions.
Bulletin des Sciences Mathématiques 115, 301-368.
Math.
Review 92k:60183
-
S. Watanabe (1975),
On time inversion of one-dimensional diffusion process. Zeitschrift für Wahr
31, 115-124.
Math.
Review 51#1983
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|