![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A simple proof of the Poincaré inequality for a large class of probability measures
|
Dominique Bakry, LSP, Univ. toulouse 3 Franck Barthe, LSP, Univ. toulouse 3 Patrick Cattiaux, LSP, Univ. toulouse 3 Arnaud Guillin, LATP, Univ. Aix-Marseille 1 |
Abstract
Abstract. We give a simple and direct proof of the existence of a spectral gap under some Lyapunov type condition which is satisfied in particular by log-concave probability measures on Rn.
The proof is based on arguments introduced in Bakry and al, but for the sake of completeness, all details are provided.
|
Full text: PDF
Pages: 60-66
Published on: February 4, 2008
|
Bibliography
- C. Ané, S. Blachère, D. Chafai, P. Fougè, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de France, Paris, 2000.
- D. Bakry, P. Cattiaux, and A. Guillin. Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré. J. Func. Anal., 254:727-759, 2008.
- Bobkov, S. G. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999), no. 4, 1903--1921. MR1742893 (2001h:60026)
- Cattiaux, Patrick. Hypercontractivity for perturbed diffusion semigroups. Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), no. 4, 609--628. MR2188585 (2006i:60112)
- P. Cattiaux, A. Guillin, F. Y. Wang, and L. Wu.
Lyapunov conditions for logarithmic Sobolev and super Poincare inequality. Available on Math. ArXiv 0712.0235., 2007.
- Fougères, Pierre. Spectral gap for log-concave probability measures on the real line. Séminaire de Probabilités XXXVIII, 95--123, Lecture Notes in Math., 1857, Springer, Berlin, 2005. MR2126968 (2006a:60018)
- Ledoux, Michel. Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surveys in differential geometry. Vol. IX, 219--240, Surv. Differ. Geom., IX, Int. Press, Somerville, MA, 2004. MR2195409 (2007f:58049)
- Wu, Liming. Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal. 172 (2000), no. 2, 301--376. MR1753178 (2001e:60062)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|