conjecture</A>
of Hammersley and Welsh (1965) about the convexity of the time
constant in first-passage
percolation, as a functional on the space of distribution functions.
The present counterexample only works for first-passage percolation on
$ZZ^d$ for $d$ large.">
 |
|
|
| | | | | |
|
|
|
|
|
On the Non-Convexity of the Time Constant in First-Passage Percolation
|
Harry Kesten, Cornell University |
Abstract
We give a counterexample to a
conjecture
of Hammersley and Welsh (1965) about the convexity of the time
constant in first-passage
percolation, as a functional on the space of distribution functions.
The present counterexample only works for first-passage percolation on
$ZZ^d$ for $d$ large.
|
Full text: PDF
Pages: 1-6
Published on: January 25, 1996
|
Bibliography
-
Aizenman, M. and Barsky, D. J. (1987),
Sharpness of the phase transition in percolation models.
Comm. Math. Phys. 108, 489-526.
Math. Review 88c:82026
-
van den Berg, J. and Kesten, H. (1993),
Inequalities for the time constant in first-passage percolation.
Ann. Appl. Probab. 3, 56-80.
Math. Review 94a:60134
-
Broadbent, S. R. and Hammersley, J. M. (1957),
Percolation processes I. Crystals and mazes.
Proc. Cambr. Phil. Soc. 53, 629-641.
Math. Review number not available.
-
Chayes, J. T., Chayes, L. and Durrett, R. (1986),
Critical behavior of the two-dimensional first passage time.
J. Stat. Phys. 45, 933-951.
Math. Review 88f:60175
-
Grimmett, G. (1989),
Percolation.
Springer-Verlag.
Math. Review 90j:60109
-
Hammersley, J. M. (1957),
Percolation processes: Lower bounds for the critical
probability.
Ann. Math. Statist. 28, 790-795.
Math. Review 21:374
-
Hammersley, J. M. (1959),
Bornes supérieures de la probabilité critique dans un processus
de filtration.
pp.17-37 in Le Calcul des probabilités et ses Applications,
CNRS, Paris.
Math. Review 21:4487
-
Hammersley, J. M. and Welsh, D. J. A. (1965),
First-passage percolation, subadditive processes, stochastic
networks, and generalized renewal theory.
pp. 61-110 in Bernoulli-Bayes-Laplace Anniversary Volume, (J.
Neyman and L. M. LeCam, eds.) Springer-Verlag.
Math. Review 33:6731
-
Hara, T. (1990),
Mean-field critical behavior for correlation length for
percolation in high dimensions.
Probab. Th. Rel. Fields 86, 337-385.
Math. Review 91m:60187
-
Kesten, H. (1986),
Aspects of first-passage percolation.
pp. 125-264 in Lecture Notes in Math., vol. 1180, (P. L.
Hennequin ed.) Springer-Verlag.
Math. Review 88h:60201
-
Kesten, H. (1987),
Scaling relations for 2D-percolation.
Comm. Math. Phys. 109, 109-156.
Math. Review 88k:60174
-
Kingman, J. F. C. (1968),
The ergodic theory of subadditive stochastic processes.
J. Roy. Stat. Soc. Ser. B 30, 499-510.
Math. Review 40:8114
-
Menshikov, M. V. (1986),
Coincidence of critical points in percolation problems.
Soviet Math. Doklady 33, 856-859.
Math. Review 88k:60175
-
Smythe, R. T. and Wierman, J. C. (1978),
First-Passage Percolation on the Square Lattice.
Lecture Notes in Math., vol 671, Springer-Verlag.
Math. Review 80a:60135
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|