conjecture</A> of Hammersley and Welsh (1965) about the convexity of the time constant in first-passage percolation, as a functional on the space of distribution functions. The present counterexample only works for first-passage percolation on $ZZ^d$ for $d$ large.">
Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 1 (1996) > Paper 1 open journal systems 


On the Non-Convexity of the Time Constant in First-Passage Percolation

Harry Kesten, Cornell University


Abstract
We give a counterexample to a conjecture of Hammersley and Welsh (1965) about the convexity of the time constant in first-passage percolation, as a functional on the space of distribution functions. The present counterexample only works for first-passage percolation on $ZZ^d$ for $d$ large.


Full text: PDF

Pages: 1-6

Published on: January 25, 1996


Bibliography
  1. Aizenman, M. and Barsky, D. J. (1987), Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108, 489-526. Math. Review 88c:82026
  2. van den Berg, J. and Kesten, H. (1993), Inequalities for the time constant in first-passage percolation. Ann. Appl. Probab. 3, 56-80. Math. Review 94a:60134
  3. Broadbent, S. R. and Hammersley, J. M. (1957), Percolation processes I. Crystals and mazes. Proc. Cambr. Phil. Soc. 53, 629-641. Math. Review number not available.
  4. Chayes, J. T., Chayes, L. and Durrett, R. (1986), Critical behavior of the two-dimensional first passage time. J. Stat. Phys. 45, 933-951. Math. Review 88f:60175
  5. Grimmett, G. (1989), Percolation. Springer-Verlag. Math. Review 90j:60109
  6. Hammersley, J. M. (1957), Percolation processes: Lower bounds for the critical probability. Ann. Math. Statist. 28, 790-795. Math. Review 21:374
  7. Hammersley, J. M. (1959), Bornes supérieures de la probabilité critique dans un processus de filtration. pp.17-37 in Le Calcul des probabilités et ses Applications, CNRS, Paris. Math. Review 21:4487
  8. Hammersley, J. M. and Welsh, D. J. A. (1965), First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. pp. 61-110 in Bernoulli-Bayes-Laplace Anniversary Volume, (J. Neyman and L. M. LeCam, eds.) Springer-Verlag. Math. Review 33:6731
  9. Hara, T. (1990), Mean-field critical behavior for correlation length for percolation in high dimensions. Probab. Th. Rel. Fields 86, 337-385. Math. Review 91m:60187
  10. Kesten, H. (1986), Aspects of first-passage percolation. pp. 125-264 in Lecture Notes in Math., vol. 1180, (P. L. Hennequin ed.) Springer-Verlag. Math. Review 88h:60201
  11. Kesten, H. (1987), Scaling relations for 2D-percolation. Comm. Math. Phys. 109, 109-156. Math. Review 88k:60174
  12. Kingman, J. F. C. (1968), The ergodic theory of subadditive stochastic processes. J. Roy. Stat. Soc. Ser. B 30, 499-510. Math. Review 40:8114
  13. Menshikov, M. V. (1986), Coincidence of critical points in percolation problems. Soviet Math. Doklady 33, 856-859. Math. Review 88k:60175
  14. Smythe, R. T. and Wierman, J. C. (1978), First-Passage Percolation on the Square Lattice. Lecture Notes in Math., vol 671, Springer-Verlag. Math. Review 80a:60135
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X