Home
|
Contents
|
Submissions, editors, etc.
|
Login
|
Search
|
EJP
Electronic Communications in Probability
>
Vol. 12 (2007)
> Paper 8
open journal systems
A counterexample for the optimality of Kendall-Cranston coupling
Kazumasa Kuwada
,
Ochanomizu University
Karl-Theodor Sturm
,
Institute for applied mathematics, University of Bonn
Abstract
We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian particle does not maximize the coupling probability.
Full text:
PDF
Pages: 66-72
Published on: April 3, 2007
Bibliography
M. Cranston. Gradient estimates on manifolds using coupling.
J. Funct. Anal.
99
(1991), no. 1, 110--124.
Math review 93a:58175
E.-P. Hsu, K.-Th. Sturm. Maximal coupling of Euclidean Brownian motions. preprint.
W. S. Kendall. Nonnegative Ricci curvature and the Brownian coupling property.
Stochastics
19
(1986), no. 1-2, 111--129.
Math Review 88e:60092
K. Kuwada. On uniqueness of maximal coupling for diffusion processes with a reflection. to appear in Journal of Theoretical Probability.
M.-K. von Renesse. Intrinsic coupling on Riemannian manifolds and polyhedra.
Electron. J. Probab.
9
(2004), no. 14, 411--435.
Math Review 2005i:60158
Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others
Home
|
Contents
|
Submissions, editors, etc.
|
Login
|
Search
|
EJP
Electronic Communications in Probability. ISSN: 1083-589X