![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Explicit Bounds for the Approximation Error in Benford's Law
|
Lutz Dümbgen, University of Bern Christoph Leuenberger, Ecole d'Ingénieurs de Fribourg |
Abstract
Benford’s law states that for many random variables X > 0 its leading digit D = D(X)
satisfies approximately the equation ℙ(D = d) = log 10(1 + 1∕d) for d = 1,2,…,9. This
phenomenon follows from another, maybe more intuitive fact, applied to Y := log 10X: For
many real random variables Y , the remainder U := Y -⌊Y ⌋ is approximately uniformly
distributed on [0,1). The present paper provides new explicit bounds for the latter
approximation in terms of the total variation of the density of Y or some derivative of it.
These bounds are an interesting and powerful alternative to Fourier methods. As a
by-product we obtain explicit bounds for the approximation error in Benford’s law.
|
Full text: PDF
Pages: 99-112
Published on: February 22, 2008
|
Bibliography
- M. Abramowitz, I.A. Stegun (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
- F. Benford (1938). The law of anomalous numbers. Proc. Amer. Phil. Soc.78, 551-572.
- Diaconis, Persi. The distribution of leading digits and uniform distribution ${rm mod}$ $1$. Ann. Probability 5 (1977), no. 1, 72--81. MR0422186 (54 #10178)
- Duncan, R. L. On the density of the $k$-free integers. Fibonacci Quart. 7 1969 140--142. MR0240036 (39 #1390)
- Engel, Hans-Andreas; Leuenberger, Christoph. Benford's law for exponential random variables. Statist. Probab. Lett. 63 (2003), no. 4, 361--365. MR1996184 (2004d:60050)
- Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren. Concrete mathematics.A foundation for computer science.Second edition.Addison-Wesley Publishing Company, Reading, MA, 1994. xiv+657 pp. ISBN: 0-201-55802-5 MR1397498 (97d:68003)
- Hill, Theodore P. A statistical derivation of the significant-digit law. Statist. Sci. 10 (1995), no. 4, 354--363. MR1421567 (98a:60021)
- T.P. Hill (1998). The First Digit Phenomenon. American Scientist 86, 358-363.
- Hill, Theodore P.; Schürger, Klaus. Regularity of digits and significant digits of random variables. Stochastic Process. Appl. 115 (2005), no. 10, 1723--1743. MR2165341 (2006m:60008)
- Jolissaint, Paul. Loi de Benford, relations de récurrence et suites équidistribuées.(French) [Benford's law, recurrence relations and uniformly distributed sequences] Elem. Math. 60 (2005), no. 1, 10--18. MR2188341 (2006j:11109)
- Kontorovich, Alex V.; Miller, Steven J. Benford's law, values of $L$-functions and the $3x+1$ problem. Acta Arith. 120 (2005), no. 3, 269--297. MR2188844 (2007c:11085)
- Knuth, Donald E. The art of computer programming. Vol. 2.Seminumerical algorithms.Second edition.Addison-Wesley Series in Computer Science and Information Processing.Addison-Wesley Publishing Co., Reading, Mass., 1981. xiii+688 pp. ISBN: 0-201-03822-6 MR0633878 (83i:68003)
- Leemis, Lawrence M.; Schmeiser, Bruce W.; Evans, Diane L. Survival distributions satisfying Benford's law. Amer. Statist. 54 (2000), no. 4, 236--241. MR1803620
- S.J. Miller and M.J. Nigrini (2006, revised 2007). Order statistics and shifted almost Benford behavior. Preprint (arXiv:math/0601344v2).
- S.J. Miller and M.J. Nigrini (2007). Benford's Law applied to hydrology data - results and relevance to other geophysical data. Mathematical Geology 39, 469-490.
- Newcomb, Simon. Note on the Frequency of Use of the Different Digits in Natural Numbers. Amer. J. Math. 4 (1881), no. 1-4, 39--40. MR1505286
- M. Nigrini (1996). A Taxpayer Compliance Application of Benford's Law. J. Amer. Taxation Assoc. 18, 72-91.
- Pinkham, Roger S. On the distribution of first significant digits. Ann. Math. Statist. 32 1961 1223--1230. MR0131303 (24 #A1155)
- Raimi, Ralph A. The first digit problem. Amer. Math. Monthly 83 (1976), no. 7, 521--538. MR0410850 (53 #14593)
- Royden, H. L. Real analysis.The Macmillan Co., New York; Collier-Macmillan Ltd., London 1963 xvi+284 pp. MR0151555 (27 #1540)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|