![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Dynamical properties and characterization of gradient drift diffusions
|
Sébastien Darses, Boston University Ivan Nourdin, University Paris VI |
Abstract
We study the dynamical properties of the Brownian diffusions having
σ Id as diffusion coefficient matrix and b=∇U
as drift vector. We characterize this class through the equality
D+2=D-2, where
D+ (resp. D-) denotes the forward
(resp. backward) stochastic derivative of Nelson's type. Our proof
is based on a remarkable identity for
D+2-D-2 and on the use
of the martingale problem.
|
Full text: PDF
Pages: 390-400
Published on: October 21, 2007
|
Bibliography
-
Cresson, J.; Darses, S.
Plongement stochastique des systèmes lagrangiens. (French) [Stochastic embedding of Lagrangian systems]
C. R. Math. Acad. Sci. Paris 342 (2006), no. 5, 333-336.
Math. Review MR2201959 (2006i:37115)
-
Darses, S.; Nourdin, I.
Stochastic derivatives for fractional diffusions
Ann. Probab. 35 (2007), no. 5, 1998-2020.
Math. Review number not yet available.
-
Föllmer, H.
Time reversal on Wiener space.
Stochastic processes---mathematics and physics (Bielefeld, 1984), 119-129, Lecture Notes in Math., 1158,
Springer, Berlin, 1986.
Math. Review MR0838561 (88a:60140)
-
Karatzas, I.; Shreve, S. E.
Brownian motion and stochastic calculus. Second edition. Graduate Texts in Mathematics, 113.
Springer-Verlag, New York, 1991. xxiv+470 pp. ISBN: 0-387-97655-8
Math. Review MR1121940 (92h:60127)
-
Kolmogoroff, A.
Zur Umkehrbarkeit der statistischen Naturgesetze. (German)
Math. Ann. 113 (1937), no. 1, 766--772.
Math. Review MR1513121
-
Millet, A.; Nualart, D.; Sanz, M.
Integration by parts and time reversal for diffusion processes. Ann. Probab. 17 (1989), no. 1, 208--238.
Math. Review MR0972782 (90m:60088)
-
Nelson, E.
Dynamical theory of Brownian motion.
Princeton University Press. Second edition.
Math. Review number not available.
-
Pardoux, É.
Grossissement d'une filtration et retournement du temps d'une diffusion. (French)
[Enlargement of a filtration and time reversal of a diffusion] Séminaire de Probabilités, XX, 1984/85, 48--55,
Lecture Notes in Math., 1204, Springer, Berlin, 1986.
Math. Review MR0942014 (89e:60150)
-
Rogers, L. C. G.; Williams, D.
Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics.
John Wiley & Sons, Inc., New York, 1987. xiv+475 pp. ISBN: 0-471-91482-7
Math. Review MR0921238 (89k:60117)
-
Roelly, S.; Thieullen, M.
Duality formula for the bridges of a Brownian diffusion: application to gradient drifts.
Stochastic Process. Appl. 115 (2005), no. 10, 1677--1700.
Math. Review MR2165339 (2006k:60069)
-
Royer, G. Une initiation aux inégalités de Sobolev logarithmiques. (French)
[An introduction to logarithmic Sobolev inequalities] Cours Spécialisés [Specialized Courses], 5.
Société Mathématique de France, Paris, 1999. viii+114 pp. ISBN: 2-85629-075-2
Math. Review MR1704288 (2000k:60002)
-
Thieullen, M.
Second order stochastic differential equations and non-Gaussian reciprocal diffusions.
Probab. Theory Related Fields 97 (1993), no. 1-2, 231--257.
Math. Review MR1240725 (94k:60081)
-
Zheng, W. A.; Meyer, P.-A.
Quelques résultats de "mécanique stochastique". (French) [Some results in "stochastic mechanics"]
Seminar on probability, XVIII, 223--244, Lecture Notes in Math., 1059, Springer, Berlin, 1984.
Math. Review MR0770964 (86c:81026)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|