![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The scaling limit of senile reinforced random walk.
|
Mark P Holmes, University of Auckland |
Abstract
This paper proves that the scaling limit of nearest-neighbour senile reinforced random walk is Brownian Motion when the time T spent on the first edge has finite mean. We show that under suitable conditions, when T has heavy tails the scaling limit is the so-called fractional kinetics process, a random time-change of Brownian motion. The proof uses the standard tools of time-change and invariance principles for additive functionals of Markov chains.
|
Full text: PDF
Pages: 104-115
Published on: February 19, 2009
|
Bibliography
-
G. Ben Arous and J. Cerny.
Scaling limit for trap models on Z^d.
Ann. Probab., 35(6):2356-2384, 2007
Math. Review 2353391
-
J. Bertoin.
Subordinators: Examples and Applications.
In Lectures on Probability Theory and Statistics: Ecole D'Ete de Probabilites de Saint-Flour XXVII - 1997.
Springer, 1999.
Math. Review 1746300
-
N.H. Bingham, C.M. Goldie, and J.L. Teugels.
Regular Variation.
Cambridge Unviersity Press, 1987.
Math. Review 1015093
-
B. Davis.
Weak limits of perturbed random walks and the equation Y_t=B_t+a sup{Y_s:s<=t}+b inf{Y_s:s<=t}.
Ann. Probab., 24(4):2007-2023, 1996.
Math. Review 1415238
-
S. Ethier and T. Kurtz.
Markov Processes: Characterization and Convergence.
Wiley, New York, 1986.
Math. Review 0838085
-
W. Feller.
An Introduction to Probability Theory and its Applications vol.
2.
Wiley, New York, 1966.
-
A. Gut.
An extension of the Kolmogorov-Feller weak law of large numbers
with an application to the St. Petersburg game.
J. Theor. Prob., 17:769-779, 2004.
Math. Review 2091561
-
N. Herrndorf.
A functional central limit theorem for weakly dependent sequences of
random variables.
Ann. Probab., 12:141-153, 1984.
Math. Review 0723735
-
M. Holmes and A. Sakai.
Senile reinforced random walks.
Stoch. Proc. Appl., 117:1519-1539, 2007.
Math. Review 2353038
-
L. Horvath and Q. Shao.
Limit distributions of directionally reinforced random walks.
Adv. in Math., 134:367-383, 1998.
Math. Review 1617789
-
W. Kager.
Diffusion constants and martingales for senile random walks.
arXiv:0705.3305v2 2007.
-
R.D. Mauldin, M. Monticino, and H. Weizsacker.
Directionally reinforced random walks.
Adv. in Math., 117:239-252, 1996.
Math. Review 1371652
-
M.M. Meerschaert and H.-P. Scheffler.
Limit theorems for continuous-time random walks with infinite mean
waiting times.
J. Appl. Prob., 41:623-638, 2004.
Math. Review 2074812
-
E.W. Montroll and G.H. Weiss.
Random walks on lattices ii.
J. Math. Phys., 6:167-181, 1965.
Math. Review 0172344
-
R. Pemantle.
A survey of random processes with reinforcement.
Probability Surveys, 4:1-79, 2007.
Math. Review 2282181
-
W. Whitt.
Stochastic-process limits.
Springer-Verlag, New York, 2002.
Math. Review 1876437
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|