![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
An Extreme-Value Analysis of the LIL for Brownian Motion
|
Davar Khoshnevisan, University of Utah, USa David A. Levin, University of Oregon, USA Zhan Shi, Université Paris VI, France |
Abstract
We use excursion theory and the ergodic theorem
to present an extreme-value analysis
of the classical law of the iterated
logarithm (LIL) for Brownian motion. A simplified
version of our method also proves,
in a paragraph, the classical
theorem of Darling and Erdős (1956).
|
Full text: PDF
Pages: 196-206
Published on: September 30, 2005
|
Bibliography
| Anderson, C. W.
Extreme value theory for a class of discrete distributions with applications to
some stochastic processes.
J. Appl. Probability 7 1970 99-113.
MR0256441 (41 #1097) |
Berman, Simeon M.
Limiting distribution of the maximum of a diffusion process.
Ann. Math. Statist 35 1964 319-329.
MR0160255 (28 #3469) |
Berman, Simeon M.
Extreme sojourns for random walks and birth-and-death processes.
Comm. Statist. Stochastic Models 2 (1986),
no. 3, 393-408.
MR0867565 (88c:60131) |
Berman, Simeon M.
Extreme sojourns of diffusion processes.
Ann. Probab. 16 (1988), no. 1, 361-374.
MR0920278 (88k:60143) |
Bertoin, Jean.
Darling-Erdős theorems for normalized sums of i.i.d. variables close to a stable law.
Ann. Probab. 26 (1998), no. 2, 832-852.
MR1626527 (99k:60191) |
Breiman, Leo.
A delicate law of the iterated logarithm for non-decreasing stable processes.
Ann. Math. Statist. 39 1968 1818-1824.
MR0233420 (38 #1742) |
Davis, Philip J.
Gamma Function and Related Functions.
Handbook of Mathematical Functions, 253-293,
Dover, New York. 1965
|
Darling, D. A.;
Erdős, P.
A limit theorem for the maximum of normalized sums of independent random variables.
Duke Math. J. 23 (1956), 143-155.
MR0074712 (17,635c) |
Dobric, Vladimir; Marano, Lisa.
Rates of convergence for Lévy's modulus of continuity and Hinchin's law of the iterated logarithm.
High dimensional probability, III (Sandjberg, 2002),
105-109, Progr. Probab., 55, Birkhäuser, Basel, 2003.
MR2033883 |
Einmahl, Uwe.
Strong invariance principles for partial sums of independent random vectors.
Ann. Probab. 15 (1987), no. 4, 1419-1440.
MR0905340 (88h:60071) |
Einmahl, Uwe.
The Darling-Erdős theorem for sums of i.i.d. random variables.
Probab. Theory Related Fields 82 (1989), no. 2, 241-257.
MR0998933 (90k:60040) |
Einmahl, Uwe; Mason, David M.
Darling-Erdős theorems for martingales.
J. Theoret. Probab. 2 (1989), no. 4, 437-460.
MR1011198 (91e:60099) |
Erdős, Paul.
On the law of the iterated logarithm.
Ann. of Math. (2) 43, (1942). 419-436.
MR0006630 (4,16j) |
Feller, W.
The law of the iterated logarithm for identically distributed random variables.
Ann. of Math. (2) 47, (1946). 631-638.
MR0017894 (8,214h) |
Fill, James Allen.
Convergence rates related to the strong law of large numbers.
Ann. Probab. 11 (1983), no. 1, 123-142.
MR0682804 (84c:60051) |
Itô, Kiyosi.
Poisson point processes attached to Markov processes.
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
(Univ. California, Berkeley, Calif., 1970/1971), Vol. III:
Probability theory, pp. 225-239.
Univ. California Press, Berkeley, Calif., 1972.
MR0402949 (53 #6763) |
Khintchine, A. Ya..
Asymptotische Gesetz der Wahrscheinlichkeitsrechnung.
Springer, 1933. |
Motoo, Minoru.
Proof of the law of iterated logarithm through diffusion equation.
Ann. Inst. Statist. Math. 10 1958 21-28.
MR0097866 (20 #4331) |
Oodaira, Hiroshi.
Some limit theorems for the maximum of normalized sums of weakly dependent random variables.
Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975),
pp. 1-13. Lecture Notes in Math., Vol. 550, Springer, Berlin, 1976.
MR0478297 (57 #17781) |
Resnick, Sidney I.
Extreme values, regular variation, and point processes.
Applied Probability. A Series of the Applied Probability Trust, 4.
Springer-Verlag, New York, 1987. xii+320 pp. ISBN:
0-387-96481-9
MR0900810 (89b:60241) |
Rootzén, Holger.
Maxima and exceedances of stationary Markov chains.
Adv. in Appl. Probab. 20 (1988), no. 2, 371-390.
MR0938151 (89e:60129) |
Rogers, L. C. G.; Williams, David.
Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus.
Reprint of the second (1994) edition. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 2000. xiv+480
pp. ISBN: 0-521-77593-0
MR1780932 (2001g:60189) |
Revuz, Daniel; Yor, Marc.
Continuous martingales and Brownian motion.
Third edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 293.
Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7
MR1725357 (2000h:60050) |
Serfozo, Richard.
High-level exceedances of regenerative and semistationary processes.
J. Appl. Probab. 17 (1980), no. 2, 423-431.
MR0568952 (81h:60050) |
Shorack, Galen R.
Extension of the Darling and Erdős theorem on the maximum of normalized sums.
Ann. Probab. 7 (1979), no. 6, 1092-1096.
MR0548907 (80i:60028) |
Sen, Pradip Kumar;
Wichura, Michael J.
Estimation of first crossing time distribution for Brownian motion processes relative to upper class boundaries.
Sankhya Ser. A 46 (1984), no. 1, 24-34.
MR0768913 (86j:60097) |
Wichura, Michael J.
Boundary crossing probabilities associated with Motoo's law of the iterated logarithm.
Ann. Probability 1 (1973), 437-456.
MR0373034 (51 #9236) |
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|