|  |  | 
	|  | |  |  |  |  | |  | 
	|  |  |  | 
	 | 
 
 
 
	| Renewal series and  square-root boundaries for Bessel processes 
 
 |  
		 
			| Nathanael  Enriquez, Universite Paris 10 Christophe  Sabot, Université de Lyon 1
 Marc  Yor, Universite Paris 6
 
 |  
 
 
			 
				| Abstract We show how a description of Brownian exponential functionals  as a renewal series gives  access to the law of
 the hitting time of a square-root boundary by a Bessel process.
 This extends classical results by Breiman and Shepp, concerning   Brownian motion, and recovers by different means,
 extensions for Bessel processes, obtained independently by Delong and Yor.
 
 
 
 |  
   | Full text: PDF 
 Pages: 649-652
 
 Published on: December 17, 2008
 
 
 
 |  
                         
                                | Bibliography 
 
Breiman, Leo. First exit times from a square root boundary. 1967  Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2  pp. 9--16 Univ. California Press, Berkeley, Calif.  MR0212865 (35 #3730)DeLong, David M. Crossing probabilities for a square root boundary by a Bessel process. Comm. Statist. A---Theory Methods  10  (1981),  no. 21, 2197--2213. MR0629897 (82i:62119)DeLong, David M. Erratum: ``Crossing probabilities for a square root boundary by a Bessel process'' [Comm. Statist. A---Theory Methods 10 (1981), no. 21, 2197--2213; MR 82i:62119]. Comm. Statist. A---Theory Methods  12  (1983),  no. 14, 1699. MR0711257 (84i:62106)Dufresne, Daniel. The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J.  1990,  no. 1-2, 39--79. MR1129194 (92i:62195)Lamperti, John. Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete  22  (1972), 205--225. MR0307358 (46 #6478)Lebedev, N. N. Special functions and their applications.Revised edition, translated from the Russian and edited by Richard A. Silverman.Unabridged and corrected republication.Dover Publications, Inc., New York,  1972. xii+308 pp. MR0350075 (50 #2568)Shepp, L. A. A first passage problem for the Wiener process. Ann. Math. Statist.  38  1967 1912--1914. MR0217879 (36 #968)Vervaat, Wim. On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab.  11  (1979),  no. 4, 750--783. MR0544194 (81b:60064)Yor, Marc. On square-root boundaries for Bessel processes, and pole-seeking Brownian motion. Stochastic analysis and applications (Swansea, 1983),  100--107, Lecture Notes in Math., 1095, Springer, Berlin,  1984.  MR0777516 (86h:60155)Yor, Marc. On some exponential functionals of Brownian motion. Adv. in Appl. Probab.  24  (1992),  no. 3, 509--531. MR1174378 (94b:60095)Yor, Marc. Sur certaines fonctionnelles exponentielles du mouvement brownien réel.(French)  [On some exponential functionals of real Brownian motion]  J. Appl. Probab.  29  (1992),  no. 1, 202--208. MR1147781 (93g:60179) 
 
 
 |  
 
 
 | 
 
 
 
 
 
 
 
 
 
   | 
	|  |   
 
 |  | 
 
	|  | |  |  |  |  | 
 
 Electronic Communications in Probability.   ISSN: 1083-589X |  |