![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Explicit Conditions for the Convergence of Point Processes Associated to Stationary Arrays
|
Raluca M Balan, University of Ottawa Sana Louhichi, Universite Paris-sud |
Abstract
In this article, we consider a stationary array of random variables (which satisfy some
asymptotic independence conditions), and the corresponding sequence of point processes.
Our main result identifies some explicit conditions for the convergence of the sequence of
point processes in terms of the probabilistic behavior of the variables in the array.
|
Full text: PDF
Pages: 428-441
Published on: September 30, 2010
|
Bibliography
-
R. M. Balan, R. M. and S. Louhichi. Convergence of point processes with weakly dependent points.
J. Theoret. Probab. 22 (2009), 955-982.
Math. Review MR2558660
-
Balan, R. M. and Louhichi, S. A cluster limit theorem for infinitely divisible point processes (2009).
Preprint available at: http://arxiv.org/abs/0911.5471. Math Review number not available.
-
Balkema, A. and Resnick, S. I.
Max-infinite divisibility. J. Appl. Probab. 14 (1977), 309-319.
Math. Review MR0438425
-
K. Bartkiewicz, A. Jakubowski, T. Mikosch and O. Wintenberger. Stable limits for sums of dependent infinite
variance random variables. To appear in Probab. Th. Rel. Fields (2009). Math Review number not available.
-
J. Beirlant, Y. Goegebeur, Y, J. Segers and J. Teugels. Statistics of Extremes: Theory
and Applications (2004). Wiley Series in Probability and Statistics.
Math. Review MR2108013
-
J. Dedecker and S. Louhichi. Conditional convergence to infinitely divisible distributions with finite variance.
Stoch. Proc. Appl. 115 (2005), 737-768.
Math. Review MR2132596
-
J. Dedecker and S. Louhichi. Convergence to infinitely divisible distributions with finite variance.
ESAIM Probab. Stat. 9 (2005), 38-73.
Math. Review MR2148960
-
R. A. Davis and T. Hsing. Point process and partial sum convergence for weakly dependent random
variables with infinite variance. Ann. Probab. 23 (1995), 879-917.
Math. Review MR1334176
-
R. Durrett and S. I. Resnick. Functional limit theorems for dependent variables.
Ann. Probab. 6 (1978), 829-846.
Math. Review MR0503954
-
B. V. Gnedenko and A. N. Kolmogorov.Limit Distributions for Sums of
Independent Random Variables (1954). Addison-Wesley, MA.
Math. Review MR0062975
-
T. Hsing, J. Husler and M. R. Leadbetter. On the exceedance process for a
stationary sequence. Probab. Th. Rel. Fields 78 (1988), 97-112.
Math. Review MR0940870
-
A. Jakubowski. Minimal conditions in p-stable
limit theorems. Stoch. Proc. Appl.
44 (1993), 291-327.
Math. Review MR1200412
-
A. Jakubowski. Minimal conditions in $p$-stable
limit theorems. Stoch. Proc. Appl.
68 (1997), 1-20.
Math. Review MR1454576
-
A. Jakubowski and M. Kobus.
alpha-stable limit theorems for sums of dependent random vectors.
J. Multiv. Anal. 29 (1989), 219-251.
Math. Review MR1004336
-
O. Kallenberg. Random Measures. Third edition (1983). Springer, New York.
Math. Review MR0818219
-
M. R. Leadbetter. Extremes and local dependence in stationary sequences.
Z. Wahr. verw. Gebiete 65 (1983), 291-306.
Math. Review MR0722133
-
G. F. Newell. Asymptotic extremes for m-dependent random variables. Ann. Math. Stat.
35 (1964),1322-1325.
Math. Review MR0164361
-
G. L. O'Brien. The maximal term of uniformly mixing stationary processes.
Z. Wahr. verw. Gebiete 30 (1974), 57-63.
Math. Review MR0362451
-
G. L. O'Brien. Extreme values for stationary and Markov sequences.
Ann. Probab. 15 (1987), 281-291.
Math. Review MR0877604
-
S. I. Resnick. Weak convergence to extremal processes. Ann. Probab.
3 (1975), 951-960.
Math. Review MR0428396
-
S. I. Resnick. Extreme Values, Regular Variation, and Point Processes
(1987). Springer, New York.
Math. Review MR0900810
-
S. I. Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modelling
(2007). Springer, New York.
Math. Review MR2271424
-
S. I. Resnick and P. Greenwood. A bivariate stable characterization
and domains of attraction. J. Multiv. Anal. 9 (1979), 206-221.
Math. Review MR0538402
-
J. Segers. Approximate Distributions of Clusters of Extremes.
Statist. Probab. Lett. 74 (2005), 330-336.
Math. Review MR2186477
-
J. Segers. Rare events, temporal dependence, and the extremal index.
J. Appl. Probab. 43 (2006), 463-485.
Math. Review MR2248577
-
R. L. Smith. The extremal index for a Markov chain. J. Appl. Probab.
29 (1992), 37-45.
Math. Review MR1147765
-
I. Weissman. On weak convergence of
extremal processes. Ann. Probab.
4 (1976), 470-473.
Math. Review MR0400330
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|