|
|
|
| | | | | |
|
|
|
|
|
Countable representation for infinite dimensional diffusions derived from the two-parameter Poisson-Dirichlet process
|
Matteo Ruggiero, University of Pavia Stephen G. Walker, University of Kent |
Abstract
This paper provides a countable representation for a class of infinite-dimensional diffusions which extends the infinitely-many-neutral-alleles model and is related to the two-parameter Poisson-Dirichlet process. By means of Gibbs sampling procedures, we define a reversible Moran-type population process. The associated process of ranked relative frequencies of types is shown to converge in distribution to the two-parameter family of diffusions, which is stationary and ergodic with respect to the two-parameter Poisson-Dirichlet distribution. The construction provides interpretation for the limiting process in terms of individual dynamics.
|
Full text: PDF
Pages: 501-517
Published on: November 26, 2009
|
Bibliography
-
Aldous, D. (1985). Exchangeability and related topics. École d'été de probabilités de Saint-Flour XIII. Lecture notes in Math. 1117. Springer, Berlin.
0883646
-
Bertoin, J. (2006). Random fragmentation and coagulation processes. Cambridge University Press, Cambridge.
2253162
-
Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.
0233396
-
Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1, 353-355.
0362614
-
Dawson, D.A. (1993). Measure-valued Markov processes. École d'été de probabilités de Saint-Flour XXI. Lecture Notes in Math. 1541. Springer, Berlin.
1242575
-
Donnelly, P. and Kurtz, T.G. (1996). A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24, 69-742.
1404525
-
Donnelly, P. and Kurtz, T.G. (1999a). Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9, 1091-1148.
1728556
-
Donnelly, P. and Kurtz, T.G. (1999b). Particle representation for measure-valued population models. Ann. Probab. 27, 166-205.
1681126
-
Ethier, S.N. and Kurtz, T.G. (1981). The infinitely-many-neutral-alleles diffusion model. Adv. Appl. Probab. 13, 429-452.
0615945
-
Ethier, S.N. and Kurtz, T.G. (1986). Markov processes: characterization and convergence. Wiley, New York.
0838085
-
Ethier, S.N. and Kurtz, T.G. (1992). On the stationary distribution of the neutral diffusion model in population genetics. Ann. Appl. Probab. 2, 24-35.
1143391
-
Ethier, S.N. and Kurtz, T.G. (1993). Fleming-Viot processes in population genetics. SIAM J. Control Optim. 31, 345-386.
1205982
-
Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230.
0350949
-
Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
1141740
-
Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96, 161-173.
1952729
-
Kingman, J.F.C. (1975). Random discrete distributions. J. Roy. Statist. Soc. Ser B 37, 1-22.
0368264
-
Lijoi, A. and Prünster, I. (2009). Models beyond the Dirichlet process. To appear in Hjort, N.L., Holmes, C.C. Müller, P., Walker, S.G. (Eds.), Bayesian Nonparametrics. Cambridge University Press.
-
Petrov, L. (2009). Two-parameter family of diffusion processes in the Kingman simplex. Funct. Anal. Appl., in press.
-
Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory and Related Fields 102, 145-158.
1337249
-
Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, probability and game theory, IMS Lecture Notes Monogr. Ser. 30, Inst. Math. Statist., Hayward, CA.
1481784
-
Pitman, J. (2006). Combinatorial stochastic processes. École d'été de probabilités de Saint-Flour XXXII. Lecture Notes in Math. 1875. Springer, Berlin.
2245368
-
Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855-900.
1434129
-
Ruggiero, M. and Walker, S.G. (2009). Bayesian nonparametric construction of the Fleming-Viot process with fertility selection. Statist. Sinica 19, 707-720.
2514183
-
Sethuraman, J. (1994). A constructive definition of the Dirichlet process prior. Statist. Sinica 2, 639-650.
1309433
-
Teh, Y.W. and Jordan, M.I. (2009). Bayesian Nonparametrics in Machine Learning. To appear in Hjort, N.L., Holmes, C.C. Müller, P., Walker, S.G. (Eds.), Bayesian Nonparametrics. Cambridge University Press.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|