![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Scaling Limit of the Prudent Walk
|
Vincent Beffara, UMPA Sacha Friedli, UFMG Yvan Velenik, Université de Genève |
Abstract
We describe the scaling limit of the nearest neighbour prudent walk on Z2, which performs steps uniformly in directions in which it does not see sites already visited. We show that the scaling limit is given by the process $Z_u = int_0^{3u/7} ( σ11W(s)≥ 0 vec{e}1 + σ21W(s)< 0 vec{e}2 ) ds$, u ∈ [0,1], where W is the one-dimensional Brownian motion and σ1,σ2 two random signs. In particular, the asymptotic speed of the walk is well-defined in the L1-norm and equals 3/7.
|
Full text: PDF
Pages: 44-58
Published on: February 24, 2010
|
Bibliography
-
O. Angel, I. Benjamini, and B. Virág.
Random walks that avoid their past convex hull.
Electron. Comm. Probab.,
8:6--16 (electronic), 2003.
Math. Review 2004f:60201
-
M. Bousquet-Mélou.
Families of prudent self-avoiding walks.
Preprint arXiv: 0804.4843.
-
J.C. Dethridge, T.M. Garoni, A.J. Guttmann, and I.Jensen.
Prudent walks and polygons.
Preprint arXiv: 0810.3137.
-
J.C. Dethridge and A.J. Guttmann.
Prudent self-avoiding walks.
Entropy , 10:309--318, 2008.
Math. Review 2009k:82046
-
E.~Duchi.
On some classes of prudent walks.
FPSAC '05, Taormina, Italy, 2005.
-
A.J. Guttmann.
Some solvable, and as yet unsolvable, polygon and walk models.
International Workshop on Statistical Mechanics and
Combinatorics: Counting Complexity, 42:98--110, 2006.
-
J. Komlós, P. Major, and G. Tusnády.
An approximation of partial sums of independent RV's, and the
sample DF {II}.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34(1):33--58,
1976.
Math. Review 53#6697
-
G.F. Lawler and V.~Limic.
Random Walk: a Modern Introduction.
Preliminary draft (version: February 2010).
-
S.B. Santra, W.A. Seitz, and D.J. Klein.
Directed self-avoiding walks in random media.
Phys. Rev. E, 63(6):067101, Part 2 JUN 2001.
-
U. Schwerdtfeger.
Exact solution of two classes of prudent polygons.
Preprint arXiv: 0809.5232.
-
L. Turban and J.-M. Debierre.
Self-directed walk: a Monte Carlo study in three dimensions.
J. Phys. A, 20:3415--3418, 1987.
Math. Review 88j:82003
-
L. Turban and J.-M. Debierre.
Self-directed walk: a Monte Carlo study in two dimensions.
J. Phys. A, 20:679--686, 1987.
-
M.P.W. Zerner.
On the speed of a planar random walk avoiding its past convex hull.
Ann. Inst. H. Poincaré Probab. Statist., 41(5):887--900,
2005.
Math. Review MR2165256
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|