![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Large deviation principles for Markov processes via Phi-Sobolev inequalities
|
Liming Wu, Wuhan University and Université Blaise Pascal Nian Yao, Wuhan University |
Abstract
Via Phi-Sobolev inequalities, we give some sharp
integrability conditions on $F$ for the large deviation principle
of the empirical mean $frac{1}{T}{int_{0}^{T}{F(X_{s})}ds}$ for
large time $T$, where $F$ is unbounded with values in some
separable Banach space. Several examples are provided.
|
Full text: PDF
Pages: 10-23
Published on: January 2, 2008
|
Bibliography
- R. F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and Gaussian,
Orlicz hypercontractivity and isoperimetry, Rev. Mat.
Iberoamericana 22 (2006), no. 3, 993--1067. MR2320410
- S. Bobkov and F. G"otze, Exponential integrability and
transportation cost related to
logarithmic Sobolev inequalities,
J. Funct. Anal. 163 (1999), no. 1, 1--28.
MR1682772
- P. Cattiaux and A. Guillin, Deviation bounds for
additive functionals of Markov process, Preprint 2006.
- D. Chafa"i, Entropies, convexity, and functional inequalities: on $Phi$-entropies and $Phi$-Sobolev inequalities, J. Math. Kyoto Univ. 44 (2004), no. 2,
325--363.
MR2081075
- M.F. Chen, Eigenvalues, Inequalities and Ergodic
Theory, Springer-Verlag London, Ltd., London, 2005.
MR2105651
- E.B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92.
Cambridge University Press, Cambridge,
1990.
MR1103113
- J.D. Deuschel and D.W. Stroock, Large deviations,
Pure and Appl. Math.137, Academic Press, Inc., Boston,
MA, 1989.
MR0997938
- A. Dembo and O. Zeitouni, Large Deviations Techniques
and Applications, 38. Springer-Verlag, New York, 1998.
MR1619036
- M.D. Donsker and Varadhan, S.R.S., Asymptotic
evaluation of certain Markov process expectations for large time,
I-IV, Comm. Pur. Appl. Math., 28 (1975),1--47 and 279--301; 29(1976),
389--461; 36(1983), 183-212.
MR0386024
- F.Q. Gao, A Note on Cram'er's Theorem, Lecture Notes in
Mathematics, 1655. S'eminaire de Probabilit'es XXXI, 77-79,
Springer, 1997.
- F.Q. Gao and Q.H. Wang, Upper Bound Estimates of
Cram'er Functionals for Markov Processes, Potential Analysis 19 (2003), 383--398.
MR1988112
- Giles and John R., Convex analysis with application in the differentiation of convex functions,
Research Notes in Mathematics, 58. Pitman (Advanced
Publishing Program), Boston, Mass.-London, 1982.
MR0650456
- F.Z. Gong and F.Y. Wang, Functional inequalities for
uniformly integrable semigroups and applications, Forum Math.
14 (2002), 293--313.
MR1880915
- L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math.,97
(1975), no. 4, 1061--1083.
MR0420249
- O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques
sur l'ultracontractivit. (French) [Some remarks about
ultracontractivity] J. Funct. Anal. 111 (1993), no. 1,
155--196.
MR1200640
- M. Ledoux, The concentration of measure phenomenon, 89,
Mathematical Surveys and Monographs, American Mathematical Society,
2001.
MR1849347
- P. Lezaud, Chernoff and Berry-Essen's inequalities for Markov processes, ESAIMS: Probability and
Statistics 5(2001), 183--201.
MR1875670
- M.M. Rao and Z.D. Ren, Theory of Orilicz Space, 146,
Marcel Dekker, Inc. New York, 1991.
MR1113700
- C. Roberto and B. Zegarli'nski, Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups,
J. Funct. Anal. 243 (2007), no. 1, 28--66.
MR2289793
- L. Saloffe-Coste, Aspects of Sobolev-Type
Inequlities, London Mathmatical Society Lecture Note Series, 289, Cambridge University Press, Cambridge, 2002.
MR1872526
- F.Y. Wang, Functional inequalities for empty
essential spectrum, J.Funct. Anal. 170(2000), no. 1,
219--245.
MR1736202
- F.Y. Wang, Functional inequalities, semigroup properties and spectrum estimates,
Infinite Dimensional Analysis,
Quantum Probability and Related Topics, 3 (2000), no. 2,
263--295. MR1812701
- F.Y. Wang, Functional inequalities, Markov
Semigroup and Spectral Theory, Chinese Sciences Press, Beijing/New
York, 2005.
- L.M. Wu, An introduction to large deviations, in: Yan
J.A., Peng S., Wu L.(Eds), Several Topics in Stochastic Analysis,
Academic Press of China, Beijing, 1997, 225--336 (in Chinese).
- L.M. Wu, A deviation inequality for non-reversible
Markov processes, Ann. Inst. Henri. Poincaracute{e},
Probabilitacute{e}s et Statistiques 36 (2000), no. 4,
435--445. MR1785390
- L.M. Wu, Uniformly integrable operators and large
deviations for Markov processes, J. Funct. Anal. 172 (2000),
no. 2, 301--376. MR1753178
- L.M. Wu, Large and moderate deviations and exponential convergence for
stochastic damping Hamilton systems, Stoch. Proc. and Appl.
91 (2001), no. 2, 205--238. MR1807683
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|