![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On the re-rooting invariance property of Lévy trees
|
Thomas Duquesne, Université Pierre et Marie Curie Jean-Francois Le Gall, Université Paris-Sud |
Abstract
We prove a strong form of the invariance under re-rooting of the distribution of the continuous random trees called Lévy trees. This expends previous results due to several authors.
|
Full text: PDF
Pages: 317-326
Published on: August 12, 2009
|
Bibliography
-
R. Abraham, J.F. Delmas,
Williams' decomposition of the Levy continuous random tree and
simultaneous extinction probability for populations
with neutral mutations. Stoch. Process. Appl.
119 (2009), 1124-1143.
MR2508567
-
D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), 1--28.
MR1085326
-
D. Aldous, The continuum random tree. II. An overview, in: Stochastic analysis (Durham, 1990), 23--70, Cambridge Univ. Press, Cambridge.
MR1166406
-
D. Aldous, The continuum random tree. III, Ann. Probab. 21 (1993), 248--289.
MR1207226
-
D. Aldous, Tree-based models for random distribution of mass, J. Statist. Phys. 73 (1993), 625--641.
MR1251658
-
J. Bertoin, Levy Processes. Cambridge University Press, Cambridge, 1996.
MR1406564
-
B. Chen, D. Ford, M. Winkel,
A new family of Markov branching trees: the alpha-gamma model.
Electr. J. Probab. 14 (2009), 400-430.
MR2480547
-
T. Duquesne, A limit theorem for the contour process of conditioned
Galton-Watson trees. Ann. Probab. 31 (2003), 996-1027.
MR1964956
-
T. Duquesne, J.F. Le Gall, Random Trees, Levy Processes
and Spatial Branching Processes. Asterisque 281 (2002)
MR1954248
-
T. Duquesne, J.F. Le Gall, Probabilistic and fractal aspects
of Levy trees. Probab. Th. Rel. Fields 131 (2005), 553-603.
MR2147221
-
S.N. Evans, J.W. Pitman, A. Winter, Rayleigh processes, real trees
and root growth with re-grafting. Probab. Th. Rel. Fields
134 (2006), 81-126.
MR2221786
-
M. Gromov, Metric Structures for Riemannian and
Non-Riemannian Spaces. Progress in Mathematics. Birkh"auser, Boston, 1999.
MR1699320
-
B. Haas, G. Miermont, The genealogy of
self-similar fragmentations with negative index as a
continuum random tree. Electr. J. Probab. 9 (2004), 57-97.
MR2041849
-
B. Haas, G. Miermont, J.W. Pitman, M. Winkel, Continuum tree
asymptotics of discrete fragmentations and applications to phylogenetic models.
Ann. Probab. 36 (2008), 1790-1837.
MR2440924
-
B. Haas, J.W. Pitman, M. Winkel, Spinal partitions and
invariance under re-rooting of continuum random trees. Ann. Probab., to appear.
-
J.F. Le Gall, The topological structure of scaling limits of
large planar maps. Invent. Math. 169 (2007), 621-670.
MR2336042
-
J.F. Le Gall, Y. Le Jan, Branching processes in Levy processes: The exploration process.
Ann. Probab. 26 (1998), 213-252.
MR1617047
-
J.F. Le Gall, M. Weill,
Conditioned Brownian trees. Ann. Inst. H. Poincare, Probab. Stat. 42
(2006), 455-489.
MR2242956
-
P. Marchal,
A note on the fragmentation of the stable tree. In: Fifth Colloquium on Mathematics and Computer
Science. DMCTS Proceedings AI (2008), 489-500.
-
J.F. Marckert, A. Mokkadem, A.,
Limit of normalized quadrangulations: the Brownian map.
Ann. Probab. 34 (2006), 2144--2202.
MR2294979
-
J. Pitman, Combinatorial Stochastic Processes. Lectures Notes Math. 1875.
Springer, Berlin, 2006.
MR2245368
-
M. Weill, Regenerative real trees. Ann. Probab.
35 (2007), 2091-2121.
MR2353384
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|