|
|
|
| | | | | |
|
|
|
|
|
The Center of Mass of the ISE and the Wiener Index of Trees
|
Svante Janson, Uppsala University Philippe Chassaing, Institut Elie Cartan |
Abstract
We derive the distribution
of the center of mass S of the
integrated superBrownian excursion (ISE)
from the asymptotic distribution of the Wiener
index for simple trees.
Equivalently, this is the distribution
of the integral of a Brownian snake.
A recursion formula for the moments and asymptotics
for moments and tail probabilities are derived.
|
Full text: PDF
Pages: 178-187
Published on: December 30, 2004
|
Bibliography
-
D. Aldous.
Tree-based models for random distribution of mass.
J. Statist. Phys. 73 (1993), 625-641.
Math. Review 94k:60130
-
D. Aldous.
Brownian excursions, critical random graphs and the multiplicative coalescent.
Ann. Probab. 25 (1997), 812-854.
Math. Review 98d:60019
-
J. Ambjorn, B. Durhuus, T. Jónsson.
Quantum gravity, a statistical field theory approach.
Cambridge Monographs on Mathematical Physics (1997) Cambridge University Press.
Math. Review number not available.
-
N.H. Bingham, C.M. Goldie, J.L. Teugels.
Regular variation.
Encyclopedia of Mathematics and its Applications 27
(1989) Cambridge University Press.
Math. Review 90i:26003
-
C. Borgs, J. Chayes, R. van der Hofstad, G. Slade.
Mean-field lattice trees. On combinatorics and statistical mechanics.
Ann. Comb. 3 (1999), 205-221.
Math. Review 2001i:82036
-
P. Chassaing, G. Schaeffer.
Random planar lattices and integrated superBrownian excursion.
Probab. Theory Related Fields 128 (2004), 161-212.
Math. Review 2004k:60016
-
L. Davies.
Tail probabilities for positive random variables with entire
characteristic functions of very regular growth.
Z. Angew. Math. Mech. 56 (1976), T334-T336.
Math. Review 0431331
-
J.F. Delmas.
Computation of moments for the length of the one dimensional ISE support.
Electron. J. Probab. 8 (2003), 15 pp. .
Math. Review 2041818
-
A. Dembo, O. Zeitouni.
Large deviations techniques and applications.
Applications of Mathematics 38 (1998) Springer-Verlag.
Math. Review 99d:60030
-
A. Dembo, O. Zeitouni.
Large deviations for random distribution of mass.
Random discrete structures (Minneapolis, MN, 1993), 1989.
IMA Vol. Math. Appl.76 (1996), 45-53.
Math. Review 97d:60051
-
E. Derbez, G. Slade.
The scaling limit of lattice trees in high dimensions.
Comm. Math. Phys. 193 (1998), 69-104.
Math. Review 99b:60138
-
S. Janson.
The Wiener index of simply generated random trees.
Random Structures Algorithms 22 (2003), 337-358.
Math. Review 2004b:05186
-
Y. Kasahara.
Tauberian theorems of exponential type.
J. Math. Kyoto Univ. 18 (1978), 209-219.
Math. Review 80g:40008
-
J.F. Le Gall.
Spatial branching processes, random snakes and partial differential equations.
Lectures in Mathematics ETH Zurich (1999) Birkhauser Verlag.
Math. Review 2001g:60211
-
J.F. Marckert, A. Mokkadem.
States spaces of the snake and its tour-convergence of the discrete snake.
J. Theoret. Probab. 16 (2003), 1015-1046.
Math. Review 2033196
-
L. Serlet.
A large deviation principle for the Brownian snake.
Stochastic Process. Appl. 67 (1997), 101-115.
Math. Review 98j:60041
-
G. Slade.
Scaling limits and super-Brownian motion.
Notices Amer. Math. Soc. 49 (2002), 1056-1067.
Math. Review 2003g:60170
-
J. Spencer.
Enumerating graphs and Brownian motion.
Comm. Pure Appl. Math. 50 (1997), 291-294.
Math. Review 97k:05105
-
E. M. Wright.
The number of connected sparsely edged graphs.
J. Graph Theory 1 (1977), 317-330.
Math. Review 0463026
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|