![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A Representation for Non-Colliding Random Walks
|
Neil O'Connell, BRIMS, HP Labs Marc Yor, Universite Pierre et Marie Curie |
Abstract
We define a sequence of mappings $Gamma_k:D_0(R_+)^kto
D_0(R_+)^k$ and prove the following result: Let $N_1,ldots,N_n$ be the
counting functions of independent Poisson processes on $R_+$ with respective
intensities $mu_1<mu_2<cdots <mu_n$. The conditional law of
$N_1,ldots,N_n$, given that $$N_1(t)lecdotsle N_n(t), mbox{ for all
}tge 0,$$ is the same as the unconditional law of $Gamma_n(N)$. From
this, we deduce the corresponding results for independent Poisson processes
of equal rates and for independent Brownian motions (in both of these cases
the conditioning is in the sense of Doob). This extends a recent
observation, independently due to Baryshnikov (2001) and Gravner, Tracy
and Widom (2001), which relates the law of a certain functional of Brownian
motion to that of the largest eigenvalue of a GUE random matrix.
Our main result can also be regarded as a generalisation of Pitman's representation
for the 3-dimensional Bessel process.
|
Full text: PDF
Pages: 1-12
Published on: July 28, 2001
|
Bibliography
-
J. Baik (2000),
Random vicious walks and random matrices. Comm.
Pure Appl. Math. 53, 1385-1410.
Math.
Review 1 773 413
-
J. Baik, P. Deift and K. Johansson (1999),
On the distribution of the
length of the longest increasing subsequence of random permutations.
J. Amer. Math. Soc. 12, no. 4, 1119-1178.
Math.
Review 2000e:05006
-
Yu. Baryshnikov (2001), GUES and QUEUES. Probab. Theor. Rel. Fields
119,
256-274. Math.
Review 1 818 248
-
Ph. Biane (1994), Quelques propriétés du mouvement brownien
dans un cone.. Stoch. Proc. Appl. 53, no. 2, 233-240. Math.
Review 95j:60129
-
Ph. Bougerol and Th. Jeulin (2001),
Paths in Weyl chambers and random
matrices. In preparation. Math. Review number not available.
-
P. Brémaud (1981),
Point Processes and Queues: Martingale Dynamics.
Springer-Verlag.
Math.
Review 82m:60058
-
P. Brémaud (1999),
Markov Chains. Gibbs Fields, Monte-Carlo Simulation,
and Queues. Texts in App. Maths., vol. 31. Springer.
Math.
Review 2000k:60137
-
P.J. Burke (1956),
The output of a queueing system. Operations Research
4,
no. 6, 699--704.
Math.
Review 18,707g
-
E. Cépa and D. Lépingle (1997),
Diffusing particles with
electrostatic repulsion. Probab. Th. Rel. Fields 107, no. 4,
429-449. Math.
Review 98k:60177
-
J.L. Doob (1984),
Classical Potential Theory and its Probabilistic Counterpart.
Springer.
Math.
Review 1 814 344
-
F.J Dyson (1962),
A Brownian-motion model for the eigenvalues of a random
matrix. J. Math. Phys. 3, 1191-1198.
Math.
Review 26 #5904
-
S.N. Ethier and T.G. Kurtz (1986),
Markov Processes: Characterization
and Convergence. Wiley, New York.
Math.
Review 88a:60130
-
P.J. Forrester (1999).
Random walks and random permutations. Preprint,
1999. (xxx math.CO/9907037) Math. Review number not available.
-
P.W. Glynn and W. Whitt (1991),
Departures from many queues in series.
Ann. Appl. Prob. 1, no. 4, 546-572.
Math.
Review 92i:60162
-
D. Grabiner (1999),
Brownian motion in a Weyl chamber, non-colliding
particles, and random matrices. Ann. Inst. H. Poincaré Probab.
Statist. 35, no. 2, 177-204.
Math.
Review 2000i:60091
-
J. Gravner, C.A. Tracy and H. Widom (2001),
Limit theorems for height
fluctuations in a class of discrete space and time growth models. J.
Stat. Phys. 102, nos. 5-6, 1085-1132. Math. Review number not available.
-
J. M. Harrison and R.J. Williams (1990),
On the quasireversibility of
a multiclass Brownian service station. Ann. Probab. 18, 1249-1268.
Math.
Review 91i:60204
-
D. Hobson and W. Werner (1996),
Non-colliding Brownian motion on the
circle. Bull. Math. Soc. 28, 643-650.
Math.
Review 97k:60217
-
K. Johansson (2000), Shape fluctuations and random matrices. Commun.
Math. Phys. 209, 437-476.
Math.
Review 1 737 991
-
K. Johansson (1999),
Discrete orthogonal polynomial ensembles and the
Plancherel measure. Preprint 1999, to appear in Ann. Math. (xxx math.CO/9906120)
Math. Review number not available.
-
F.P. Kelly (1979), Reversibility and Stochastic Networks. Wiley.
Math.
Review 81j:60105
-
Wolfgang König and Neil O'Connell (2001),
Eigenvalues of the Laguerre
process as non-colliding squared Bessel processes. To appear in Elect.
Commun. Probab.. Math. Review number not available.
-
Wolfgang König, Neil O'Connell and Sebastien Roch (2001),
Non-colliding
random walks, tandem queues and discrete ensembles. Preprint. Math.
Review number not available.
-
P.M. Morse (1955), Stochastic properties of waiting lines. Operations
Research 3, 256.
Math.
Review 17,51d
-
H. Matsumoto and M. Yor (1999),
A version of Pitman's 2M-X theorem for
geometric Brownian motions. C.R. Acad. Sci. Paris 328, Série
I, 1067-1074.
Math.
Review 2000d:60134
-
M.L. Mehta (1991), Random Matrices: Second Edition. Academic Press.
Math.
Review 92f:82002
-
G.G. O'Brien (1954), The solution of some queueing problems. J.
Soc. Indust. Appl. Math. 2, 134.
Math.
Review 16,600h
-
Neil O'Connell and Marc Yor (2001),
Brownian analogues of Burke's theorem.
Stoch. Proc. Appl., to appear. Math. Review number not available.
-
J. W. Pitman (1975),
One-dimensional Brownian motion and the three-dimensional
Bessel process. Adv. Appl. Probab.
7, 511-526.
Math.
Review 51 #11677
-
J. W. Pitman and L.C.G. Rogers (1981),
Markov functions. Ann. Probab.
9,
573-582.
Math.
Review 82j:60133
-
E. Reich (1957),
Waiting times when queues are in tandem. Ann. Math.
Statist. 28, 768-773.
Math.
Review 19,1203b
-
Ph. Robert (2000),
Réseaux et files d'attente: méthodes
probabilistes. Math. et Applications, vol. 35. Springer. Math. Review
number not available.
-
C.A. Tracy and H. Widom (1994),
Fredholm determinants, differential
equations and matrix models. Comm. Math. Phys. 163, no. 1, 33-72.
Math.
Review 95e:82005
-
David Williams (1979),
Diffusions, Markov Processes and Martingales.
Volume 1: Foundations. Wiley.
Math.
Review 80i:60100
-
David Williams (1974),
Path decomposition and continuity of local time
for one-dimensional diffusions I. Proc. London Math. Soc. 28,
no. 3, 738-768.
Math.
Review 50 #3373
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|