![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Smoothness of the law of the supremum of the fractional Brownian motion
|
Noureddine Lanjri Zaïdi, Université Ibn Tofaïl, Kénitra, Maroc David Nualart, Universitat de Barcelona |
Abstract
This note is devoted to prove that the supremum of a fractional Brownian
motion with Hurst parameter $Hin left( 0,1right)$ has an infinitely
differentiable density on $left( 0,infty right)$. The proof of this
result is based on the techniques of the Malliavin calculus.
|
Full text: PDF
Pages: 102-111
Published on: September 15, 2003
|
Bibliography
-
Albramowitz, A. and Stegun, S. (1979), Handbook of Mathematical
Functions, Nauka, Moskow. MR
81j:00014
-
Airault, H. and Malliavin, P. (1988), Integration géometrique sur
l'espace de Wiener, Bull. Sci. Math. 112, 3-52. MR
89f:60072
-
Alòs, E. and Nualart, D. (2003), Stochastic calculus with
respect to the fractional Brownian motion, Stochastics and Stochastics
Reports 75, 129-152. Math. Review number not available.
-
Decreusefond, L. and Üstünel, A.S. (1998), Stochastic analysis
of the fractional Brownian motion, Potential Anal. 10, 177-214.
MR 2000b:60133
-
Florit, C. and Nualart, D. (1995), A local criterion for smoothness
of densities and application to the supremum of the Brownian sheet, Statistics
and Probability Letters, 22, 25-31. MR
96d:60081
-
Garsia, A., Rodemich, E. and Rumsey, H. (1970/71), A real variable lemma
and the continuity of paths of some Gaussian processes, Indiana Univ.
Math. Journal, 20, 565-578. MR
42#2534
-
Nualart, D. (1995), The Malliavin calculus and related topics, Springer
Verlag. MR
96k:60130
-
Samko, S. G., Kilbas, A.A. and Mariachev, O. I. (1993), Fractional integrals
and derivatives, Gordon and Breach Sience. MR
96d:26012
-
Vives, J. and Nualart, D. (1988), Continuité absolue de la loi du
maximum d'un processus continu, C. R. Acad. Sci. Paris, 307,
349-354.
MR 89i:60082
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|