![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Some remarks on tangent martingale difference sequences in L1-spaces
|
Sonja Gisela Cox, TU Delft Mark Christiaan Veraar, TU Delft |
Abstract
Let X be a Banach space. Suppose that for all p in (1, ∞) a
constant Cp,X depending only on X and p exists such that
for any two X-valued martingales f and g with tangent
martingale difference sequences one has
E||f||p ≤ Cp,X E||g||p (*).
This property is equivalent to the UMD condition. In fact, it is
still equivalent to the UMD condition if in addition one demands
that either f or g satisfy the so-called (CI) condition.
However, for some applications it suffices to assume that (*)
holds whenever g satisfies the (CI) condition. We show that the
class of Banach spaces for which (*) holds whenever only g
satisfies the (CI) condition is more general than the class of UMD
spaces, in particular it includes the space L1. We state several
problems related to (*) and other decoupling inequalities.
|
Full text: PDF
Pages: 421-433
Published on: October 29, 2007
|
Bibliography
- Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probability 1 (1973), 19--42. MR0365692 (51 #1944)
- Burkholder, D. L. A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9 (1981), no. 6, 997--1011. MR0632972 (83f:60070)
- Burkholder, Donald L. Martingales and Fourier analysis in Banach spaces. Probability and analysis (Varenna, 1985), 61--108, Lecture Notes in Math., 1206, Springer, Berlin, 1986. MR0864712 (88c:42017)
- Burkholder, Donald L. Martingales and singular integrals in Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 233--269, North-Holland, Amsterdam, 2001. MR1863694 (2003b:46009)
- de la Peña, Víctor H.; Giné, Evarist. Decoupling.From dependence to independence.Randomly stopped processes. $U$-statistics and processes. Martingales and beyond.Probability and its Applications (New York). Springer-Verlag, New York, 1999. xvi+392 pp. ISBN: 0-387-98616-2 MR1666908 (99k:60044)
- Garling, D. J. H. Random martingale transform inequalities. Probability in Banach spaces 6 (Sandbjerg, 1986), 101--119, Progr. Probab., 20, Birkhäuser Boston, Boston, MA, 1990. MR1056706 (92a:60111)
- Geiss, Stefan. A counterexample concerning the relation between decoupling constants and UMD-constants. Trans. Amer. Math. Soc. 351 (1999), no. 4, 1355--1375. MR1458301 (99f:60011)
- P. Hitczenko. On tangent sequences of UMD-space valued random vectors. unpublished manuscript.
- Hitczenko, Pawel. Comparison of moments for tangent sequences of random variables. Probab. Theory Related Fields 78 (1988), no. 2, 223--230. MR0945110 (90a:60089)
- P. Hitczenko. On a domination of sums of random variables by sums of conditionally independent ones. Ann. Probab., 22(1):453--468, 1994.
- Kallenberg, Olav. Foundations of modern probability.Second edition.Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
- Kwapien, S.; Woyczynski, W. A. Tangent sequences of random variables: basic inequalities and their applications. Almost everywhere convergence (Columbus, OH, 1988), 237--265, Academic Press, Boston, MA, 1989. MR1035249 (91c:60020)
- Kwapien, Stanislaw; Woyczynski, Wojbor A. Random series and stochastic integrals: single and multiple.Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. xvi+360 pp. ISBN: 0-8176-3572-6 MR1167198 (94k:60074)
- B. Maurey. Système de Haar. In Séminaire Maurey-Schwartz 1974--1975: Espaces $L^{p}$, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II}, page 26 pp. Centre Math., Ecole Polytech., Paris, 1975.
- McConnell, Terry R. Decoupling and stochastic integration in UMD Banach spaces. Probab. Math. Statist. 10 (1989), no. 2, 283--295. MR1057936 (91i:60010)
- Montgomery-Smith, Stephen. Concrete representation of martingales. Electron. J. Probab. 3 (1998), No. 15, 15 pp. (electronic). MR1658686 (99k:60116)
- van Neerven, J. M. A. M.; Veraar, M. C.; Weis, L. Stochastic integration in UMD Banach spaces. Ann. Probab. 35 (2007), no. 4, 1438--1478. MR2330977
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|