|
|
|
| | | | | |
|
|
|
|
|
Moment estimates for solutions of linear stochastic differential
equations driven by analytic fractional Brownian motion
|
Jeremie M Unterberger, Institut Elie Cartan de Nancy - Universite Henri Poincare - Nancy (France) |
Abstract
As a general rule, differential equations driven by a multi-dimensional irregular path Γ are
solved by constructing a rough path over Γ. The domain of definition -- and also
estimates -- of the solutions depend on upper bounds for the rough path; these
general, deterministic estimates are too crude to apply e.g. to the solutions of stochastic
differential equations with linear coefficients
driven by a Gaussian process with H"older regularity α<1/2.
We prove here (by showing convergence of Chen's series)
that linear stochastic differential equations driven by analytic fractional Brownian motion [6,7]
with arbitrary Hurst index α∈(0,1) may be solved on the closed upper half-plane, and that the solutions have finite variance
|
Full text: PDF
Pages: 411-417
Published on: September 30, 2010
|
Bibliography
- Baudoin, Fabrice; Coutin, Laure. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007), no. 5, 550--574. MR2320949 (2008c:60050)
- Friz, Peter K.; Victoir, Nicolas B. Multidimensional stochastic processes as rough paths.Theory and applications.Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010. xiv+656 pp. ISBN: 978-0-521-87607-0 MR2604669
- Gubinelli, M. Controlling rough paths. J. Funct. Anal. 216 (2004), no. 1, 86--140. MR2091358 (2005k:60169)
- A. Lejay. Global solutions to rough differential equations with unbounded vector fields. Preprint hal available on: http://hal.archives-ouvertes.fr/inria-00451193.
- A. Neuenkirch, I. Nourdin, A. Rössler, S. Tindel. Trees and asymptotic developments for fractional stochastic differential equations. Preprint arXiv:math.PR/0611306.
- S. Tindel, J. Unterberger. The rough path associated to the multidimensional analytic fBm with any Hurst parameter. Preprint arXiv:0810.1408. To appear in: Collectanea Mathematica.
- Unterberger, Jérémie. Stochastic calculus for fractional Brownian motion with Hurst exponent $H>frac 14$: a rough path method by analytic extension. Ann. Probab. 37 (2009), no. 2, 565--614. MR2510017 (2010i:60089)
- J. Unterberger. A stochastic calculus for multidimensional fractional Brownian motion with arbitrary Hurst index, Stoch. Proc. Appl. 120 (8), 1444-1472 (2010).
- J. Unterberger. Hölder-continuous rough paths by Fourier normal ordering, Comm. Math. Phys. 298 (1), 1--36 (2010).
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|