![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Characterization of distributions with the length-bias scaling property
|
Marcos Lopez-Garcia, Instituto de Matematicas, UNAM |
Abstract
This paper characterizes the density functions of absolutely continuous positive random variables with finite expectation whose respective distribution functions satisfy the so-called length-bias scaling property.
|
Full text: PDF
Pages: 186-191
Published on: May 3, 2009
|
Bibliography
-
J. Bertoin, P. Biane and M. Yor. Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions.
Seminar on Stochastic Analysis, Random Fields and Applications IV, 45-56. Progr. Probab., 58, Birkhauser, Basel, 2004.
Math. Review 2005h:60143
-
D. R. Cox.
Renewal theory.
Methuen & Co. Ltd., London. John Wiley & Sons, Inc., New York 1962. ix+142 pp.
Math. Review 27 #3030
-
T. S. Chihara.
A characterization and a class of distributions functions for the Stieltjes-Wigert polynomials.
Canadian Math. Bull. 13 (1970), 529-532.
Math. Review 43 #6480
-
R. Gomez, M. Lopez-Garcia.
A family of heat functions as solutions of indeterminate moment problems.
Int. J. Math. Math. Sci., vol. 2007, Article ID 41526, 11 pages, doi:10.1155/2007/41526.
Math. Review 2008j:44003
-
R. C. Gupta, S. N. U. A. Kirmani.
The role of weighted distributions in stochastic modeling.
Comm. Statist. Theory Methods 19 (1990), no. 9, 3147-3162.
Math. Review 92e:62180
-
V. Leyva, A. Sanhueza, J. M. Angulo.
A length-biased version of the Birnbaum-Saunders distribution with application in water quality.
Stoch. Environ Res Risk Asses (2009) 23, 299-307, doi:10.1007/s00477-008-0215-9.
-
M. Lopez-Garcia.
Characterization of solutions to the log-normal moment problem, to appear in Theory of Probability and its Applications.
-
S. Y. Oncel, M. Ahsanullah, F. A. Aliev and F. Aygun.
Switching record and order statistics via random contractions.
Statist. Probab. Lett. 73 (2005), no. 3, 207-217.
Math. Review 2006i:62051
-
A. G. Pakes, R. Khattree.
Length-biasing, characterization of laws, and the moment problem.
Austral. J. Statist. 34 (1992), 307-322.
Math. Review 94a:60018
-
A. G. Pakes.
Length biasing and laws equivalent to the log-normal.
J. Math. Anal. Appl. 197 (1996), 825-854.
Math. Review 97f:60034
-
A. G. Pakes.
Structure of Stieltjes classes of moment-equivalent probability laws.
J. Math. Anal. Appl. 326 (2007), 1268-1290.
Math. Review 2008e:60034
-
A. G. Pakes, J. Navarro.
Distributional characterizations through scaling relations.
Aust. N. Z. J. Stat. 49 (2007), no. 2, 115-135.
Math. Review 2009a:62054
-
C. R. Rao, D. N. Shanbhag.
Choquet-Deny type functional equations with applications to stochastic models.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1994). xii+290 pp.
Math. Review 97d:60020
-
Y. Vardi, L. A. Shepp, B. F. Logan.
Distribution functions invariant under residual-lifetime and length-biased sampling, Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 415-426.
Electronic Communications in Probability.
Math. Review 83c:62167
-
D. V. Widder.
The Heat Equation.
Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London (1975). xiv+267 pp.
Math. Review 57 #6840
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|