![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Green functions and Martin compactification for killed random walks related to SU(3)
|
Kilian Raschel, Universite Pierre et Marie Curie |
Abstract
We consider the random walks killed at the boundary of the quarter plane, with homogeneous non-zero jump probabilities to the eight nearest neighbors and drift zero in the interior, and which admit a positive harmonic polynomial of degree three. For these processes, we find the asymptotic of the Green functions along all infinite paths of states, and from this we deduce that the Martin compactification is the one-point compactification.
|
Full text: PDF
Pages: 176-190
Published on: May 27, 2010
|
Bibliography
-
Biane, P. Quantum random walk on the dual of SU(n).
Probab. Theory Related Fields 89 (1991), no. 1, 117--129.
Math. Review 93a:46119
-
Biane, P. Équation de Choquet-Deny sur le dual d'un groupe compact.
(French) Probab. Theory Related Fields 94 (1992), no. 1,
39--51.
Math. Review 94a:46091
-
Biane, P. Minuscule weights and random walks on lattices.
Quantum probability & related topics, 51--65, QP-PQ,
VII, World Sci. Publ., River Edge, NJ, 1992.
Math. Review 94c:46129
-
Collins, B. Martin boundary theory of some quantum random walks.
Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 3,
367--384.
Math. Review 2005m:31021
-
Doob, J. L.; Snell, J. L.; Williamson, R. E.
Application of boundary theory to sums of independent random variables.
1960 Contributions to probability and statistics pp. 182--197
Stanford Univ. Press, Stanford, Calif.
Math. Review MR0120667
-
Dynkin, E. B. The boundary theory of Markov processes
(discrete case). (Russian)
Uspehi Mat. Nauk 24 1969 no. 2 (146) 3--42.
Math. Review MR0245096
-
Fayolle, G.; Iasnogorodski, R.; Malyshev, V.
Random walks in the quarter-plane. Algebraic methods,
boundary value problems and applications. Applications of Mathematics
(New York), 40. Springer-Verlag, Berlin, 1999. xvi+156 pp.
ISBN: 3-540-65047-4
Math. Review 2000g:60002
-
Ignatiouk-Robert, I. Martin boundary of a killed random walk on Z_+^d,
preprint : arXiv, 2009
-
Jones G. A.; Singerman D., Complex functions,
Cambridge Univ. Press, Cambridge, 1987.
Math. Review 89b:30001
-
Kurkova I.; Raschel, K. Random walks in Z_+^2 with non-zero drift absorbed at
the axes, to appear in Bulletin de la Société
Mathématique de France,
preprint :
arXiv, 2009
-
Ney, P.; Spitzer, F. The Martin boundary for random walk.
Trans. Amer. Math. Soc. 121 1966 116--132.
Math. Review MR0195151
-
Picardello M. A.; Woess W. Martin boundaries of Cartesian products of Markov
chains,
Nagoya Math. J. 128 (1992), 153–169.
Math. Review 94a:60109
-
Raschel, K. Random walks in the quarter plane absorbed at the boundary : exact and
asymptotic,
preprint : arXiv, 2009
-
Spitzer, F. Principles of random walk. The University Series in Higher
Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London
1964 xi+406 pp.
Math. Review MR0171290
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|