Florin Soucaliuc, Université Paris-Sud Wendelin Werner, Université Paris-Sud and IUF
Abstract
We give another proof
of the following result from a joint paper
with Bálint Tóth:
A Brownian
motion reflected on an independent time-reversed Brownian
motion is a Brownian
motion.
K. Burdzy, D. Nualart (2000): Brownian motion reflected on Brownian
motion, Probab. Th. Rel. Fields, to appear.
J. Pitman, M. Yor (1996): Decomposition at the maximum for excursions
and bridges of one-dimensional diffusions, in
Ito's stochastic calculus and probability theory, Springer,
293-310.
Math. Review 98f:60153
F. Soucaliuc (2001):
Réflexion, coalescence et retournement
du temps pour certaines familles de
diffusions, PhD Thesis, Université Paris-Sud.
F. Soucaliuc, B. Tóth, W. Werner (2000):
Reflection and coalescence between one-dimensional Brownian paths,
Ann. Inst. Henri Poincaré Probab. Statist.
36, 509-536,
Math. Review 2002a:60139
B. Tóth, W. Werner (1998):
The true self-repelling motion,
Probab. Th. Rel. Fields,
111, 375-452
Math. Review 99i:60092