Small time expansions for transition probabilities of
some Lévy processes
Philippe Marchal, CNRS and DMA, Ecole Normale Supérieure
Abstract
We show that there exist Lévy processes (X_t,t ≥ 0) and reals y>0
such that for small t, the probability P(X_t> y) has an expansion
involving fractional powers or more general functions of t. This constrasts
with previous results giving polynomial expansions under additional
assumptions.
Bertoin, J.; Doney, R. A.; Maller, R. A.
Passage of Lévy processes across power law boundaries at small times.
Ann. Probab. 36 (2008), no. 1, 160-197.
Math. Review MR2370602
J.E. Figueroa-Lopez. Nonparametric estimation for Lévy models based
on discrete-sampling.
To appear in the IMS Volume for the 3rd Erich L.
Lehmann Symposium} (2008).
Available at www.stat.purdue.edu/~figueroa.
Math. Review number not available.
Figueroa-López, J.E.; Houdré, Christian.
Risk bounds for the non-parametric estimation of Lévy processes.
High dimensional probability 96-116
IMS Lecture Notes Monogr. Ser. 51Inst. Math. Statist., Beachwood, OH (2006).
Math. Review 2007j:94029
J.E. Figueroa-López and C. Houdré.
Small-time expansions for the transition
distribution of Lévy processes. Preprint (2008)
Math. Review number not available.
R. Léandre. Densité en temps petit d'un processus de sauts.
Séminaire de probabilités XXI,
Lecture Notes in Math. (1987).
Math. Review 89g:60179
J. Picard. Density in small time for Lévy processes.
ESAIM: Probability
and Statistics (1997) 357--389.
Math. Review 98f:60163
L. Ruschendorf and J. Woerner. Expansion of transition distributions of
Lévy processes in small time.
Bernoulli8 (2002) 81-96.
Math. Review 2002m:60085
V. M. Zolotarev.
One-dimensional stable distributions.
Translations of Mathematical Monographs, 65.
American Mathematical Society, Providence. (1986).
Math. Review 87k:60002