 |
|
|
| | | | | |
|
|
|
|
|
First Eigenvalue of One-dimensional Diffusion Processes
|
Jian Wang, School of Mathematics and Computer Science, Fujian Normal University |
Abstract
We consider the first Dirichlet eigenvalue of diffusion operators
on the half line. A criterion for the equivalence of the first
Dirichlet eigenvalue with respect to the maximum domain and
that to the minimum domain is presented. We also describle the
relationships between the first Dirichlet eigenvalue of transient
diffusion operators and the standard Muckenhoupt's conditions for the dual
weighted Hardy inequality. Pinsky's result [17] and Chen's variational
formulas [8] are reviewed, and both provide the original motivation
for this research.
|
Full text: PDF
Pages: 232-244
Published on: May 24, 2009
|
Bibliography
- C. Albanese and A. Kuznetsov. Transformations of Markov processes and classification scheme for solvable driftless diffusions.
http://arxiv.org/0710.1596, 2007
- S. G. Bobkov and F. Goetze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities.
J. Funct. Anal. 163 (1999), no.1, 1-28. Math. Review
1682772
- S. G. Bobkov and F. Goetze. Hardy type inequalities via Riccati and Sturm-Liouville equations.
Sobolev Spaces in Mathematics I: Sobolev Type Inequalities, Inter. Math. Ser. 8 (2009), 69-86.
- M. F. Chen. Analystic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Chin. Ser. A 42 (1999), no. 8, 805-815. Math. Review
1738551
- M. F. Chen. Explicit bounds of the first eigenvalue. Sci. Chin. Ser. A 43 (2000), no. 10, 1051-1059. Math. Review
1802148
- M. F. Chen. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci. Chin. Ser. A 44 (2001), no. 4, 409-418. Math. Review
1831443
- M. F. Chen. Exponential decay of birth-death processes.Preprint, 2008.
- M. F. Chen. Eigenvalues, Inequalities and Ergodic Theory. Springer, London, 2005. Math. Review
2105651
- M. F. Chen and F. Y. Wang. Estimation of spectral gap for elliptic operators.Trans. Amer. Math.Soc. 349 (1997), no. 3, 1239-1267. Math. Review
1401516
- M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Stud. Math., 19, Berlin,1994.
Math. Review
1303354
- K. Ito and Jr. H. P. McKean.. Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin, Heidelberg and New York, 1965.
Math. Review
0199891
- Y. H. Mao. Nash inequalities for Markov processes in dimension one. Acta Math. Sin. Eng. Ser. 18 (2002), no. 1, 147-156. Math. Review
1894847
- P. Mandl. Analytical Treatment of One-dimensional Markov Processes. Springer-Verlag, Berlin, Heidelberg and New York, 1968.
Math. Review
0247667
- L. Miclo. An example of application of discrete Hardy's inequalities. Markov Processes Relat. Fields 5 (1999), no.3, 319-313. Math. Review
1710983
- B. Muckenhoupt. Hardy inequality with weights. Studia. Math. 44 (1972), 31-38. Math. Review
0311856
- R. D. Nussbaum and Y. Pinchover. On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. Journal d'Analyse Mathematique
59 (1992),162-177.Math. Review
1226957
- R. G. Pinsky.Explicit and almost explicit spectral calculations for diffusion operators.
J. Funct. Anal. 256 (2009), 3279-3312.
- M. Reed. and B. Simon. Methods of Modern Mathematical Physics.
Analysis of Operators, Academic Press, New York,1978.Math. Review
0493421
- J. Wang. First Dirichlet eigenvalue of transient birth-death processes.Preprint, 2008 .
- F. Y. Wang. Application of coupling methods to the Neumann eigenvalue problem.Probab.Theory Relat. Fields 98 (1994), no. 3, 299-306. Math. Review
1262968
- F. Y. Wang. Functional Inequalities, Markov Semigroups and Spectral Theory. Science Press, Beijing/New York, 2004.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|