![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Geometric Ergodicity and Hybrid Markov Chains
|
Gareth O. Roberts, University of Cambridge Jeffrey S. Rosenthal, University of Toronto |
Abstract
Various notions of geometric ergodicity for Markov chains on general
state spaces exist. In this paper, we review certain relations and
implications among them. We then apply these results to a
collection of chains commonly used in Markov chain Monte Carlo
simulation algorithms, the so-called hybrid chains.
We prove that under certain conditions, a hybrid chain will "inherit"
the geometric ergodicity of its constituent parts.
|
Full text: PDF
Pages: 13-25
Published on: May 14, 1997
|
Bibliography
-
S. Asmussen (1987), Applied probability and queues. John Wiley & Sons, New
York.
Math Review link
-
J. R. Baxter and J. S. Rosenthal (1995), Rates of convergence for
everywhere-positive Markov chains. Stat. Prob. Lett. 22, 333-338.
Math Review link
-
R. N. Bhattacharya (1982), On the functional central limit theorem and the
law of the iterated logarithm for Markov processes. Z.
Wahrscheinlichkeitstheorie Verw. gebiete 60, 185-201.
Math Review link
-
R. Carmona and A. Klein (1983), Exponential moments for hitting times of
uniformly ergodic Markov processes. Ann. Prob. 11, 648-655.
Math Review link
-
K. S. Chan and C. J. Geyer (1994), Discussion paper. Ann. Stat. 22,
1747-1758.
Math Review article not available.
-
J. B. Conway (1985), A course in functional analysis. Springer-Verlag, New
York.
Math Review link
-
Y. Derriennic and M. Lin (1996), Sur le theoreme limite central de Kipnis et
Varadhan pour les chaines reversibles ou normales. Comptes Rendus de
l'Academie des Sciences, Serie I, 323, No. 9, 1053-1058.
Math Review link
-
J. L. Doob (1994), Measure theory. Springer-Verlag, New York.
Math Review link
-
S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987), Hybrid Monte
Carlo. Phys. Lett. B 195, 216-222.
Math Review article not available.
-
A. E. Gelfand and A. F. M. Smith (1990), Sampling based approaches to
calculating marginal densities. J. Amer. Stat. Assoc. 85, 398-409.
Math Review link
-
C. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci. 7, No. 4,
473-483.
Math Review article not available.
-
P. J. Green (1994), Reversible jump MCMC computation and Bayesian model
determination. Tech. Rep., Dept. Mathematics, U. of Bristol.
Math Review article not available.
-
P. E. Greenwood, I. W. McKeague, and W. Wefelmeyer (1995), Outperforming the
Gibbs sampler empirical estimator for nearest neighbour random fields. Tech.
Rep., Dept. Mathematics, U. of British Columbia.
Math Review article not available.
-
W. K. Hastings (1970), Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57, 97-109.
Math Review article not available.
-
N. Jain and B. Jamison (1967), Contributions to Doeblin's theory of Markov
processes. Z. Wahrsch. Verw. Geb. 8, 19-40.
Math Review article not available.
-
C. Kipnis and S. R. S. Varadhan (1986), central limit theorem for additive
functionals of reversible Markov processes and applications to simple
exclusions. Comm. Math. Phys. 104, 1-19.
Math Review link
-
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller
(1953), Equations of state calculations by fast computing machines. J. Chem.
Phys. 21, 1087-1091.
Math Review article not available.
-
S. P. Meyn and R. L. Tweedie (1993), Markov chains and stochastic stability,
Springer-Verlag, London.
Math Review link
-
S. P. Meyn and R. L. Tweedie (1994), Computable bonds for convergence rates
of Markov chains. Ann. Appl. Prob. 4, 981-1011.
Math Review link
-
R. M. Neal (1993), Probabilistic inference using Markov chain Monte Carlo
methods. Tech. Rep. CRG-TR-93-1, Dept. Comp. Sci., U. of Toronto.
Math Review article not available.
-
E. Nummelin (1984), General irreducible Markov chains and non-negative
operators. Cambridge University Press.
Math Review link
-
E. Nummelin and R. L. Tweedie (1978), Geometric ergodicity and
$R$-positivity for general Markov chains. Ann. Prob. 6, 404-420.
Math Review article not available.
-
S. Orey (1971), Lecture notes on limit theorems for Markov chain transition
probabilities. Van Nostrand Reinhold, London.
Math Review article not available.
-
M. Reed and B. Simon (1972), Methods of modern mathematical physics. Volume
I: Functional analysis. Academic Press, New York.
Math Review article not available.
-
G. O. Roberts and R. L. Tweedie (1996), Geometric convergence and central
limit theorems for multidimensional Hastings and Metropolis algorithms.
Biometrika 83, 95-110.
Math Review link
-
M. Rosenblatt (1962), Random Processes. Oxford University Press, New York.
Math Review article not available.
-
J. S. Rosenthal (1995), Minorization conditions and convergence rates for
Markov chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558-566.
Math Review link
-
R. L. Royden (1968), Real analysis, 2nd ed. MacMillan, New York.
Math Review article not available.
-
W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.
Math Review link
-
A. F. M. Smith and G. O. Roberts (1993), Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods (with discussion). J.
Roy. Stat. Soc. Ser. B 55, 3-24.
Math Review link
-
L. Tierney (1994), A note on Metropolis Hastings kernels for general state
spaces. Tech. Rep. 606, School of Statistics, U. of Minnesota.
Math Review link
-
R. L. Tweedie (1978), Geometric ergodicity and $R$-positivity for general
Markov chains. Ann. Prob. 6, 404-420.
Math Review article not available.
-
D. Vere-Jones (1962), Geometric ergodicity in denumerable Markov chains.
Quart. J. Math. Oxford (2) 13, 7-28.
Math Review article not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|