Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 12 (2007) > Paper 23 open journal systems 


Asymptotic Distribution of Coordinates on High Dimensional Spheres

Marcus C Spruill, Georgia Institute of Technology


Abstract
The coordinates xi of a point x = (x1, x2,..., xn) chosen at random according to a uniform distribution on the l2(n)-sphere of radius n1/2 have approximately a normal distribution when n is large. The coordinates xi of points uniformly distributed on the l1(n)-sphere of radius n have approximately a double exponential distribution. In these and all the lp(n),1 ≤ p ≤ ∞, convergence of the distribution of coordinates as the dimension n increases is at the rate n1/2 and is described precisely in terms of weak convergence of a normalized empirical process to a limiting Gaussian process, the sum of a Brownian bridge and a simple normal process.


Full text: PDF

Pages: 234-247

Published on: August 15, 2007


Bibliography
  1. Andrews, George E.; Askey, Richard; Roy, Ranjan. Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. xvi+664 pp. ISBN: 0-521-62321-9; 0-521-78988-5 MR1688958 (2000g:33001)
  2. Barthe, Franck; Guédon, Olivier; Mendelson, Shahar; Naor, Assaf. A probabilistic approach to the geometry of the $lsp nsb p$-ball. Ann. Probab. 33 (2005), no. 2, 480--513. MR2123199 (2006g:46014)
  3. Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
  4. Borel,E. Introduction géométrique á quelques théories physiques. Gauthier-Villars, Paris, 1914.
  5. Borwein, D.; Borwein, J.; Fee, G.; Girgensohn, R. Refined convexity and special cases of the Blaschke-Santalo inequality. Math. Inequal. Appl. 4 (2001), no. 4, 631--638. MR1859668 (2003a:52006)
  6. Busemann, Herbert. Intrinsic area. Ann. of Math. (2) 48, (1947). 234--267. MR0020626 (8,573a)
  7. Busemann, Herbert. The isoperimetric problem for Minkowski area. Amer. J. Math. 71, (1949). 743--762. MR0031762 (11,200j)
  8. Busemann, Herbert. A theorem on convex bodies of the Brunn-Minkowski type. Proc. Nat. Acad. Sci. U. S. A. 35, (1949). 27--31. MR0028046 (10,395c)
  9. Diaconis, Persi; Freedman, David. A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 397--423. MR0898502 (88f:60072)
  10. Friedman, Avner. Foundations of modern analysis. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London 1970 vi+250 pp. MR0275100 (43 #858)
  11. Gardner, R. J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355--405 (electronic). MR1898210 (2003f:26035)
  12. Poincaré,Henri. Calcul des probabilitiés. Gauthier-Villars, Paris, 1912.
  13. Rachev, S. T.; Rüschendorf, L. Approximate independence of distributions on spheres and their stability properties. Ann. Probab. 19 (1991), no. 3, 1311--1337. MR1112418 (92k:60021)
  14. Schechtman, G.; Zinn, J. On the volume of the intersection of two $Lsp nsb p$ balls. Proc. Amer. Math. Soc. 110 (1990), no. 1, 217--224. MR1015684 (91c:46027)
  15. Serfling, Robert J. Approximation theorems of mathematical statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1980. xiv+371 pp. ISBN: 0-471-02403-1 MR0595165 (82a:62003)
  16. Stam, A. J. Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces. J. Appl. Probab. 19 (1982), no. 1, 221--228. MR0644435 (83f:60028)
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X