![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On the sphericity of scaling limits of random planar quadrangulations
|
Grégory Miermont, Fondation des Sciences Mathématiques de Paris |
Abstract
We give a new proof of a theorem by Le Gall and Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
|
Full text: PDF
Pages: 248-257
Published on: May 4, 2008
|
Bibliography
-
D. Aldous. The continuum random
tree. III. Ann. Probab. 21(1):248--289, 1993.
MR1207226
(94c:60015)
-
J. Ambjørn, B. Durhuus, T. Jonsson. Quantum geometry. A
statistical field theory approach. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, Cambridge, 1997.
MR1465433
(98i:82001)
-
E.G. Begle. Regular convergence. Duke
Math. J. 11:441--450, 1944.
MR0010964
(6,95e)
- D. Burago, Y. Burago, S. Ivanov. A course in metric
geometry. Graduate Studies in Mathematics, 33. American
Mathematical Society, Providence, RI, 2001.
MR1835418
(2002e:53053)
- P. Chassaing, G. Schaeffer. Random planar lattices and
integrated superBrownian excursion. Probab. Theory Related Fields,
128(2):161--212,
2004. MR2031225
(2004k:60016)
- S.N. Evans, J. Pitman, A. Winter. Rayleigh processes, real trees,
and root growth with re-grafting. Probab. Theory Related
Fields, 134(1):81--126,
2006. MR2221786
(2007d:60003)
- A. Greven, P. Pfaffelhuber, A. Winter. Convergence in distribution
of random metric measure spaces (Lambda-coalescent measure trees),
2006. MR number not available.
-
J.-F. Le Gall. Spatial branching processes, random snakes and
partial differential equations. Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel,
1999. MR1714707
(2001g:60211)
-
J.-F. Le Gall. A conditional limit
theorem for tree-indexed random walk. Stochastic Process. Appl.,
116(4):539--567,
2006. MR2205115
(2007g:60098)
-
J.-F. Le Gall. The topological structure of scaling limits of large
planar maps. Invent. Math.,
169(3):621-670,
2007. MR2336042
- J.-F. Le Gall, F. Paulin. Scaling limits of bipartite planar maps
are homeomorphic to the 2-sphere. Geom. Funct. Anal., 2008. To
appear. MR number not available.
- J.-F. Le Gall, M. Weill. Conditioned Brownian
trees. Ann. Inst. H. Poincaré Probab. Statist.,
42(4):455--489,
2006. MR2242956
(2007k:60268)
-
J.-F. Marckert, A. Mokkadem. Limit of normalized random
quadrangulations: the Brownian
map. Ann. Probab., 34(6):2144--2202,
2006. MR2294979
(2007m:60092)
-
B. Mohar, C. Thomassen. Graphs on surfaces. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD,
2001. MR1844449
(2002e:05050)
-
G. Schaeffer. Conjugaison d'arbres et cartes combinatoires
aléatoires. PhD thesis, Université Bordeaux I, 1998. MR
number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|