![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Heat Kernel Asymptotics on the Lamplighter Group
|
David Revelle, UC Berkeley |
Abstract
We show that, for one generating set,
the on-diagonal decay of the heat kernel on
the lamplighter group is asymptotic to
$c_1 n^{1/6}exp[-c_2 n^{1/3}]$.
We also make off-diagonal estimates which
show that there is a sharp threshold for
which elements have transition probabilities
that are comparable to the return probability.
The off-diagonal estimates also
give an upper bound for the heat kernel that
is uniformly summable in time.
The methods used also apply to a one dimensional
trapping problem, and we compute the distribution
of the walk conditioned on survival as well as a corrected asymptotic
for the survival probability. Conditioned on survival, the position of the
walker is shown to be concentrated within $alpha n^{1/3}$ of the origin
for a suitable $alpha$.
|
Full text: PDF
Pages: 142-154
Published on: November 10, 2003
|
Bibliography
Anlauf, Joachim K,, Asymptotically exact solution of the
one-dimensional trapping problem, Phys. Rev. Letters
52 (1984), 1845--1848.
|
Antal, Peter. Enlargement of obstacles for the simple random walk.
Ann. Probab. 23 (1995), no. 3, 1061--1101. MR1349162 (96m:60158) |
Avez, André. Limite de quotients pour des marches aléatoires sur des groupes.
(French) C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A317--A320. MR0315750 (47 #4299) |
Cartwright, Donald I. On the asymptotic behaviour of convolution powers of probabilities on discrete groups.
Monatsh. Math. 107 (1989), no. 4, 287--290. MR1012460 (91a:60024) |
Coulhon, T.; Grigor'yan, A.; Pittet, C. A geometric approach to on-diagonal heat kernel lower bounds on groups.
Ann. Inst. Fourier (Grenoble) 51 (2001), no. 6, 1763--1827. MR1871289 (2002m:20067) |
Dicks, Warren; Schick, Thomas. The spectral measure of certain elements of the complex group ring of a wreath product.
Geom. Dedicata 93 (2002), 121--137. MR1934693 (2003i:20005) |
Èrshler, A. G. On the asymptotics of the rate of departure to infinity.
(Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6, 251--257, 263. MR1879073 (2003a:60065) |
Grigorchuk, Rostislav I.; .Zuk, Andrzej. The lamplighter group as a group generated by a 2-state automaton, and its spectrum.
Geom. Dedicata 87 (2001), no. 1-3, 209--244. MR1866850 (2002j:60009) |
Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups.
Ann. Probab. 21 (1993), no. 2, 673--709. MR1217561 (94m:60144) |
Hughes, Barry D. Random walks and random e
nvironments. Vol. 1.
Random walks.
Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. xxii+631 pp. ISBN: 0-19-853788-3 MR1341369 (96i:60070) |
Lawler, Gregory F. Intersections of random walks.
Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2 MR1117680 (92f:60122) |
Pittet, C.; Saloff-Coste, L. On random walks on wreath products.
Ann. Probab. 30 (2002), no. 2, 948--977. MR1905862 (2003d:60013) |
Pittet, Ch.; Saloff-Coste, L. On the stability of the behavior of random walks on groups.
J. Geom. Anal. 10 (2000), no. 4, 713--737. MR1817783 (2002m:60012) |
Pruitt, William E. The rate of escape of random walk.
Ann. Probab. 18 (1990), no. 4, 1417--1461. MR1071803 (91i:60180) |
Sznitman, Alain-Sol. Brownian motion, obstacles and random media.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3 MR1717054 (2001h:60147) |
Unnikrishnan, K.; Prasad, M. A. Random walk on a one-dimensional lattice with a random distribution of traps.
Phys. Lett. A 100 (1984), no. 1, 19--20. MR0729053 (84k:82106) |
Varopoulos, Nicholas Th. Random walks on soluble groups.
Bull. Sci. Math. (2) 107 (1983), no. 4, 337--344. MR0732356 (85e:60076) |
Woess, Wolfgang. Random walks on infinite graphs and groups---a survey on selected topics.
Bull. London Math. Soc. 26 (1994), no. 1, 1--60. MR1246471 (94i:60081) |
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|