![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On Variance Conditions for Markov Chain CLTs
|
Olle Haggstrom, Chalmers University of Technology Jeffrey S. Rosenthal, University of Toronto |
Abstract
Central limit theorems for Markov chains are considered, and in particular
the relationships between various expressions for asymptotic variance
known from the literature. These turn out to be equal under fairly general
conditions, although not always. We also investigate the existence of
CLTs, and pose some open problems.
|
Full text: PDF
Pages: 454-464
Published on: December 16, 2007
|
Bibliography
-
S. Asmussen.
Applied Probability and Queues. John Wiley & Sons, New York, 1987.
Math. Review MR1978607 (2004f:60001)
-
S.K. Basu.
A local limit theorem for attraction to the standard normal law: The
case of infinite variance.
Metrika 31 (1984), 245--252.
Math. Review MR0754965 (86b:60033)
-
P. Billingsley. Convergence of Probability Measures.
Wiley, New York, 1968.
Math. Review MR0233396 (38 #1718)
-
M. Breth, J.S. Maritz, and
E. J. Williams.
On Distribution-Free Lower Confidence Limits for the Mean
of a Nonnegative Random Variable.
Biometrika 65 (1978), 529--534.
-
K.S. Chan and C.J. Geyer, Discussion paper.
Ann. Stat. 22 (1994), 1747--1758.
-
X. Chen. Limit theorems for functionals of ergodic Markov chains
with general state space. Mem. Amer. Math. Soc. 139 (1999).
Math. Review MR1491814 (99k:60170)
-
W. Feller. An introduction to Probability Theory and its
applications, Vol. II, 2nd ed. Wiley & Sons, New York, 1971.
Math. Review MR0270403 (42 #5292)
-
C.J. Geyer. Practical Markov chain Monte Carlo. Stat. Sci. 7
(1992), 473-483.
-
O. Häggström.
On the central limit theorem for geometrically ergodic Markov chains.
Probab. Th. Relat. Fields 132 (2005), 74--82.
Math. Review MR2136867 (2005m:60155)
-
J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal.
On the Applicability of Regenerative Simulation in Markov Chain Monte
Carlo. Biometrika 89 (2002), 731--743.
Math. Review MR1946508 (2003m:60200)
-
I.A. Ibragimov and Y.V. Linnik.
Independent and Stationary Sequences of Random Variables.
Wolters-Noordhoff, Groningen (English translation), 1971.
Math. Review MR0322926 (48 #1287)
-
G.L. Jones. On the Markov chain central limit theorem.
Prob. Surveys 1 (2004), 299--320.
Math. Review MR2068475 (2005j:60137)
-
C. Kipnis and S.R.S. Varadhan. Central limit theorem for additive
functionals of reversible Markov processes and applications to simple
exclusions. Comm. Math. Phys. 104 (1986), 1--19.
Math. Review MR0834478 (87i:60038)
-
S.P. Meyn and R.L. Tweedie. Markov chains and stochastic stability.
Springer-Verlag, London, 1993.
Math. Review MR1287609 (95j:60103)
-
P.A. Mykland, L. Tierney, and B. Yu.
Regeneration in Markov chain samplers.
J. Amer. Stat. Assoc. 90 (1995), 233--241.
-
M. Peligrad.
Recent advances in the central limit theorem and its weak invariance
principle for mixing sequences of random variables (a survey). In
Dependence in Probability and Statistics: A Survey of Recent
Results, E. Eberlein and M.S. Taqqu, eds., Birkhauser, Cambridge, Mass.,
1986, pp. 193--223.
Math. Review MR0899991 (88j:60053)
-
G.O. Roberts.
A note on acceptance rate criteria for CLTs for Metropolis-Hastings
algorithms. J. Appl. Prob. 36 (1999), 1210--1217.
Math. Review MR1742161 (2001a:60083)
-
G.O. Roberts and J.S. Rosenthal.
Geometric ergodicity and hybrid Markov chains.
Electronic Comm. Prob. 2 (1997), 13--25.
Math. Review MR1448322 (99b:60122)
-
G.O. Roberts and J.S. Rosenthal.
General state space Markov chains and MCMC algorithms.
Prob. Surveys 1 (2004), 20--71.
Math. Review MR2095565 (2005i:60135)
-
G.O. Roberts and J.S. Rosenthal.
Variance Bounding Markov Chains.
Preprint, 2006.
-
J.S. Rosenthal.
A review of asymptotic convergence for general state space Markov chains.
Far East J. Theor. Stat. 5 (2001), 37--50.
Math. Review MR1848443 (2002m:60130)
-
W. Rudin. Functional Analysis, 2nd ed. McGraw-Hill, New York, 1991.
Math. Review MR1157815 (92k:46001)
-
L. Tierney. Markov chains for exploring posterior distributions
(with discussion). Ann. Stat. 22 (1994), 1701--1762.
Math. Review MR1329166 (96m:60150)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|