![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Survival probabilities for branching Brownian motion with absorption
|
John William Harris, University of Bristol Simon C Harris, University of Bath |
Abstract
We study a branching Brownian motion (BBM) with absorption, in which particles move as Brownian motions with drift $-rho$, undergo dyadic branching at rate $beta>0$, and are killed on hitting the origin. In the case $rho>sqrt{2beta}$ the extinction time for this process, $zeta$, is known to be finite almost surely. The main result of this article is a large-time asymptotic formula for the survival probability $P^x(zeta>t)$ in the case $rho>sqrt{2beta}$, where $P^x$ is the law of the BBM with absorption started from a single particle at the position $x>0$. We also introduce an additive martingale, $V$, for the BBM with absorption, and then ascertain the convergence properties of $V$. Finally, we use $V$ in a `spine' change of measure and interpret this in terms of `conditioning the BBM to survive forever' when $rho>sqrt{2beta}$, in the sense that it is the large $t$-limit of the conditional probabilities $P^x(A|zeta>t+s)$, for $AinF_s$.
|
Full text: PDF
Pages: 81-92
Published on: April 7, 2007
|
Bibliography
- Athreya, Krishna B. Change of measures for Markov chains and the $Llog L$ theorem for branching processes. Bernoulli 6 (2000), no. 2, 323--338. MR1748724 (2001g:60202)
- Biggins, J. D.; Kyprianou, A. E. Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004), no. 2, 544--581. MR2058149 (2005f:60179)
- Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749 (2000e:60008)
- Borodin, Andrei N.; Salminen, Paavo. Handbook of Brownian motion---facts and formulae. Second edition. Probability and its Applications. Birkhäuser Verlag, Basel, 2002. xvi+672 pp. ISBN: 3-7643-6705-9 MR1912205 (2003g:60001)
- Champneys, Alan; Harris, Simon; Toland, John; Warren, Jonathan; Williams, David. Algebra, analysis and probability for a coupled system of reaction-diffusion equations. Philos. Trans. Roy. Soc. London Ser. A 350 (1995), no. 1692, 69--112. MR1325205 (96e:35080)
- Chauvin, Brigitte; Rouault, Alain. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988), no. 2, 299--314. MR0968823 (90b:60113)
- Ethier, Stewart N.; Kurtz, Thomas G.. Markov processes: characterisation and convergence Wiley, New York 1988. x+534 pp. ISBN: 0-471-08186-8 MR838085 (88a:60130)
- Evans, S. N.. Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 5, 959--971. MR1249698 (95e:60082)
- Freidlin, Mark. Functional integration and partial differential equations. Annals of Mathematics Studies, 109. Princeton University Press, Princeton, NJ, 1985. x+545 pp. ISBN: 0-691-08354-1; 0-691-08362-2 MR0833742 (87g:60066)
- Freidlin, Mark. Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab. 13 (1985), no. 3, 639--675. MR0799415 (87a:35104)
- Hardy, R.; Harris, S. C.. A conceptual approach to a path result for branching Brownian motion. Stoch. Process. Appl. 116 (2006), no. 12, 1992--2013. Math. Review number not available.
- Hardy, R.; Harris, S. C.. A new formulation of the spine approach for branching diffusions. arXiv:math.PR/0611054 (2006). Math. Review number not available.
- Hardy, R.; Harris, S. C.. Spine proofs for $mathcal{L}^p$-convergence of branching-diffusion martingales. arXiv:math.PR/0611056 (2006). Math. Review number not available.
- Harris, J. W.; Harris, S. C.; Kyprianou, A. E.. Further probabilistic analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincar'e Probab. Statist. 42 (2006), no. 1, 125--145. MR2196975 (2007b:60206)
- Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
- Kesten, Harry. Branching Brownian motion with absorption. Stochastic Processes Appl. 7 (1978), no. 1, 9--47. MR0494543 (58 #13384)
- Lyons, Russell; Pemantle, Robin; Peres, Yuval. Unsolved problems concerning random walks on trees. Classical and modern branching processes (Minneapolis, MN, 1994), 223--237, IMA Vol. Math. Appl., 84, Springer, New York, 1997. MR1601753 (98j:60098)
- Kyprianou, A. E. Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 1, 53--72. MR2037473 (2005a:60135)
- Lyons, Russell. A simple path to Biggins' martingale convergence for branching random walk. Classical and modern branching processes (Minneapolis, MN, 1994), 217--221, IMA Vol. Math. Appl., 84, Springer, New York, 1997. MR1601749
- Lyons, Russell; Pemantle, Robin; Peres, Yuval. Conceptual proofs of $Llog L$ criteria for mean behavior of branching processes. Ann. Probab. 23 (1995), no. 3, 1125--1138. MR1349164 (96m:60194)
- Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Vol.~293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357 (2000h:60050)
- Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 1. Foundations. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xx+386 pp. ISBN: 0-521-77594-9 MR1796539 (2001g:60188)
- Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 2. Itô Calculus. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xiv+480 pp. ISBN: 0-521-77593-0 MR1780932 (2001g:60189)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|