![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient
|
Khaled Bahlali, CNRS Luminy |
Abstract
We deal with multidimensional backward stochastic differential
equations (BSDE) with locally Lipschitz coefficient in both variables $ y,z
$ and an only square integrable terminal data. Let $ L_N $ be the Lipschitz
constant of the coefficient on the ball $ B(0,N) $ of $ R^dtimes R^{dr} $.
We prove that if $ L_N = O (sqrt {log N }) $, then the corresponding BSDE
has a unique solution. Moreover, the stability of the solution is established
under the same assumptions. In the case where the terminal data
is bounded, we establish the existence and uniqueness of the solution also
when the coefficient has an arbitrary growth (in $ y $) and without restriction
on the behaviour of the Lipschitz constant $ L_N $.
|
Full text: PDF
Pages: 169-179
Published on: August 5, 2002
|
Bibliography
-
K. Bahlali (2001), Backward stochastic differential equations with
locally Lipschitz coefficient. C.R.A.S Paris, serie I, 333, 481-486.
Math. Review 2002g:60087
- P. Briand, R. Carmona, (2000), BSDEs with polynomial growth generators.
J. Appl. Math. Stochastic Anal. 13, 3, 207-238.
Math. Review 2001j:60108
- R. Darling, E. Pardoux, (1997), Backward SDE with monotonicity and
random terminal time. Ann. of Probab. 25, 1135-1159.
Math. Review 98k:60095
- A. Dermoune, S. Hamadène, Y. Ouknine, (1999), Backward stochastic
differential equation with local time. Stoch. Stoch. Reports. 66
, 103-119.
Math. Review 2000e:60031
- N. El Karoui, S. Peng, M.C. Quenez, (1997), Backward stochastic differential
equations in finance. Math. Finance. 7, 1-71.
Math. Review 98d:90030
- N. El-Karoui and S. Mazliak eds. Pitman Research Notes in Mathematics.
Series 364.
Math. Review 98d:90030
- S. Hamadène, (1996), Equations différentielles
stochastiques rétrogrades: Le cas localement lipschitzien. Ann.
Inst. Henri Poincaré. 32, 645-660.
Math. Review 97q:60076
- S. Hamadène, (2000), Multidimensional Backward SDE's with Uniformly
Continuous Coefficient. Monte Carlo 2000 conference at Monte Carlo, France,
3-5 jul. 2000, Preprint, Université du Maine. Math.Review number not
available.
- S. Hamadène, J.P. Lepeletier, S. Peng, (1997), BSDE With continuous
coefficients and applications to Markovian nonzero sum
stochastic differential games. in N. El-Karoui and S. Mazliak
eds. Pitman Research Notes in Mathematics. Series 364.
Math. Review 1 752 678
- M. Kobylanski, (1997), Résultats d;existence et d'unicité
pour des équations différentielles stochastiques rétrogrades
avec des générateurs à croissance quadratique. C.R.A.S.
Paris, Série 1 Math. 324, 81-86.
Math. Review 97i:60095
- J.P. Lepeltier, J. San Martin, (1998), Existence for BSDE with Superlinear-Quadratic
coefficients. Stoch. Stoch.Reports. 63, 227-240.
Math. Review 9j:60087
- J. Ma, J. Yong (1999), Forward-Backward Stochastic Differential Equations
and their applications. Lectures Note in Mathematics. 1702. Springer.
Math. Review 2000k:60118
- X. Mao, (1995), Adapted solutions of backward stochastic differential
Equations with non-Lipschitz coefficient. Stoch. Proc. Appl. 58
, 281-292.
Math. Review 96f:60099
- E. Pardoux, (1999), BSDE's, weak convergence and homogenization of
semilinear PDEs. In F. Clarke and R. Stern eds. Nonlin. Analy., Diff.
Equa. and Control, Kluwer Acad. Publi. Dordrecht. 503-549.
Math. Review 2000e:60096
- E. Pardoux, S. Peng, (1990), Adapted solution of a backward stochastic
differential equation. Syst. Cont. Letters. 14, 55-61.
Math. Review 91e:60171
- E. Pardoux, S. Peng, (1992), Backward SDEs and quasilinear PDEs.
In Stochastic Partial Differential Equations and their Applications. B.L.
Rozovskii and R. Sowers, eds. Lecture Notes and inform. Sci. 176,
200-217.
Math. Review 93k:60157
- S. Peng, (1991), Probabilistic interpretation for systems of quasilinear
parabolic partial differential equations. Stoch. Stoch. Reports. 37
, 61-74.
Math. Review 93a:35159
- R. Situ (1997), On solutions of backward stochastic differential equations
with jumps and applications. Stoch. Process. Appl. 66, 209--236.
Math. Review 98j:60085
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|