|
|
|
| | | | | |
|
|
|
|
|
Stochastic integral representation of the L2 modulus of Brownian local time and a central limit theorem
|
Yaozhong Hu, University of Kansas David Nualart, University of Kansas |
Abstract
The purpose of this note is to prove a central limit theorem for the
L2modulus of continuity of the Brownian local time obtained in
[3], using techniques of stochastic analysis. The main
ingredients of the proof are an asymptotic version of Knight's
theorem and the Clark-Ocone formula for the $L^2$-modulus of the
Brownian local time
|
Full text: PDF
Pages: 529-539
Published on: November 29, 2009
|
Bibliography
- Barlow, M. T.; Yor, M.
Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal .
49 (1982), no. 2, 198--229.
Math. Review MR0680660 (84f:60073)
- Borodin, A. N. Brownian local time Russian Math. Surveys 44 (1989), 1--51.
Math. Review MR0998360 (90f:60138)
- Chen, X., Li, W., Marcus, M. B. and Rosen, J. A CLT for the $
L^{2}$ modulus of continiuty of Brownian local time. http://arxiv.org/pdf/0901.1102.pdf
- Nualart, D. The Malliavin Calculus and Related Topics.
Second edition. Springer Verlag, Berlin, 2006.
Math. Review MR2200233 (2006j:60004)
- Ocone, D. Malliavin calculus and stochastic integral
representation of diffusion processes. Stochastics } 12
(1984), 161--185.
Math. Review MR0749372 (85m:60101)
- Pitman, J.; Yor, M. Asymptotic laws of planar Brownian motion.
Ann. Probab. 14 (1986), no. 3, 733--779.
Math. Review MR0841582 (88a:60145)
- Revuz, D.; Yor, M. Continuous martingales and Brownian motion.
Third edition. Springer-Verlag, Berlin, 1999.
Math. Review MR1725357 (2000h:60050)
- Rosen, J.
A stochastic calculus proof of the CLT for the $L^2$ modulus of continuity of local time.
http://arxiv.org/pdf/0910.2922.pdf.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|