 |
|
|
| | | | | |
|
|
|
|
|
Fragmenting random permutations
|
Christina Goldschmidt, Department of Statistics, University of Oxford James B Martin, Department of Statistics, University of Oxford Dario Spano, Department of Statistics, University of Warwick |
Abstract
Problem 1.5.7 from Pitman's Saint-Flour lecture
notes: Does there exist for
each n a fragmentation process (Πn,k, 1 ≤ k ≤
n) such that Πn,k is distributed like the partition generated
by cycles of a uniform random permutation of {1,2,...,n}
conditioned to have k cycles? We show that the answer is yes. We
also give a partial extension to general exchangeable Gibbs
partitions.
|
Full text: PDF
Pages: 461-474
Published on: August 14, 2008
|
Bibliography
- Berestycki, Nathanaël; Pitman, Jim. Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys. 127 (2007), no. 2, 381--418. MR2314353 (2008g:60309)
- Elias, P.; Feinstein, A.; Shannon, C.. A note on the maximum flow through a network. Institute of Radio Engineers, Transactions on Information Theory IT-2 (1956), 117--119.
- Ford, L. R., Jr.; Fulkerson, D. R. Maximal flow through a network. Canad. J. Math. 8 (1956), 399--404. MR0079251 (18,56h)
- Gnedin, A.; Pitman, J. Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325 (2005), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 12, 83--102, 244--245; translation in J. Math. Sci. (N. Y.) 138 (2006), no. 3, 5674--5685 MR2160320 (2006h:60022)
- Gnedin, Alexander; Pitman, Jim. Poisson representation of a Ewens fragmentation process. Combin. Probab. Comput. 16 (2007), no. 6, 819--827. MR2351686
- Granovsky, Boris; Erlihson, Michael. On time dynamics of coagulation-fragmentation processes. arXiv:0711.0503v2[math.PR] (2007).
- Hall, P.. On representatives of subsets. J. London Math. Soc. 10 (1935), 26--30.
- Hoggar, S. G. Chromatic polynomials and logarithmic concavity. J. Combinatorial Theory Ser. B 16 (1974), 248--254. MR0342424 (49 #7170)
- Kamae, T.; Krengel, U.; O'Brien, G. L. Stochastic inequalities on partially ordered spaces. Ann. Probability 5 (1977), no. 6, 899--912. MR0494447 (58 #13308)
- Pitman, J. Combinatorial stochastic processes. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7--24, 2002. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1875. Springer-Verlag, Berlin, 2006. x+256 pp. ISBN: 978-3-540-30990-1; 3-540-30990-X MR2245368 (2008c:60001)
- Pitman, Jim; Yor, Marc. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997), no. 2, 855--900. MR1434129 (98f:60147)
- Sagan, Bruce E. Inductive and injective proofs of log concavity results. Discrete Math. 68 (1988), no. 2-3, 281--292. MR0926131 (89b:05009)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|