|
|
|
| | | | | |
|
|
|
|
|
Some Extensions of Fractional Brownian Motion and Sub-Fractional Brownian Motion Related to Particle Systems
|
Tomasz Bojdecki, Institute of Mathematics, University of Warsaw Luis G Gorostiza, Centro de Investigacion y de Estudios Avanzados, Mexico Anna Talarczyk, Institute of Mathematics, University of Warsaw |
Abstract
In this paper we study three self-similar, long-range dependence, Gaussian
processes. The first one, with covariance
∫0min(s,t) ua [(t-u)b+(s-u)b]du,
parameters a > -1, -1 < b ≤ 1, |b| ≤ 1 + a, corresponds to fractional
Brownian motion for a = 0, -1 < b < 1. The second one, with covariance
(2-h)(sh + th - (1/2)[(s+t)h
+ |s-t|h]),
parameter 0 < h ≤ 4, corresponds to sub-fractional Brownian motion for
0 < h < 2. The third one, with covariance
-(s2log s + t2log t -(1/2)[(s+t)2
log (s+t) +(s-t)2 log |s-t|]),
is related to the second one. These processes come from occupation time
fluctuations of certain particle systems for some values of the parameters.
|
Full text: PDF
Pages: 161-172
Published on: May 16, 2007
|
Bibliography
-
Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A. Fractional Brownian density process and its self-intersection local
time of order $k$.
J. Theoret. Probab. 17 (2004), no. 3, 717--739. MR2091558(2005j:60076)
-
Bojdecki, Tomasz; Gorostiza, Luis G.; Talarczyk, Anna. Sub-fractional Brownian motion and its relation to occupation
times.
Statist. Probab. Lett. 69 (2004), no. 4, 405--419. MR2091760
(2005k:60124)
-
Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A. Limit theorems for occupation time fluctuations of branching systems.
I. Long-range dependence.
Stochastic Process. Appl. 116 (2006), no. 1, 1--18. MR2186101 (2007b:60083)
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A. A long range
dependence stable process and an infinite variance branching system. Ann.
Probab. 35 (2007), no. 2, 500--527.
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A.
Occupation time
limits of inhomogeneous Poisson systems of independent particles,
Stoch. Proc.
Appl. (to appear).
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A.
Self-similar
stable processes arising from high density limits of occupation times of
particle systems, in preparation.
-
Theory and applications of long-range dependence.
Edited by Paul Doukhan, George Oppenheim and Murad S. Taqqu.
Birkhäuser Boston, Inc., Boston, MA, 2003. xii+719 pp. ISBN: 0-8176-4168-8 MR1956041 (2003h:60004)
-
Dzhaparidze, Kacha; van Zanten, Harry. A series expansion of fractional Brownian motion.
Probab. Theory Related Fields 130 (2004), no. 1, 39--55. MR2092872 (2005i:60065)
-
Fernique, Xavier. Intégrabilité des vecteurs gaussiens.
(French) C. R. Acad. Sci. Paris Sér. A-B 270 1970 A1698--A1699. MR0266263 (42 #1170)
-
Gorostiza, Luis G.; Wakolbinger, Anton. Persistence criteria for a class of critical branching particle systems
in continuous time.
Ann. Probab. 19 (1991), no. 1, 266--288. MR1085336 (91k:60089)
-
Houdré, Christian; Villa, José. An example of infinite dimensional quasi-helix.
Stochastic models (Mexico City, 2002),
195--201, Contemp. Math., 336, Amer. Math. Soc., Providence, RI, 2003. MR2037165 (2004m:60077)
-
Iscoe, I. A weighted occupation time for a class of measure-valued branching
processes.
Probab. Theory Relat. Fields 71 (1986), no. 1, 85--116. MR0814663 (87c:60070)
-
Kallenberg, Olav. Foundations of modern probability.
Second edition.
Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
-
Russo, Francesco; Tudor, Ciprian A. On bifractional Brownian motion.
Stochastic Process. Appl. 116 (2006), no. 5, 830--856. MR2218338(2006k:60070)
-
Talarczyk, A. A functional ergodic theorem for the occupation
time process of a branching system, (submitted).
-
Taqqu, M.S. Self-similarity and long-range dependence, 10th
Brazilian School of Probability and 2006 Annual Meeting of the Institute of
Mathematical Statistics, IMPA, Rio de Janeiro, August, 2006.
-
Tudor, Constantin. Some properties of mild solutions of delay stochastic evolution
equations.
Stochastics 17 (1986), no. 1-2, 1--18. MR0878551 (89k:60084)
-
Tudor, C. Inner product spaces of integrands associated to
sub-fractional Brownian motion, preprint.
-
Tudor C.A.; Xiao, Y. Sample path properties of bifractional
Brownian motion, Math. ArXiv PR/0606753.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|