![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Percolation Beyond Z^d, Many Questions And a Few Answers
|
Itai Benjamini, Weizmann Institute of Science Oded Schramm, Microsoft Research |
Abstract
A comprehensive study of percolation in a
more general context than the usual $Z^d$
setting is proposed, with particular focus
on Cayley graphs, almost transitive graphs,
and planar graphs. Results concerning
uniqueness of infinite clusters and inequalities
for the critical value $p_c$ are given, and a
simple planar example exhibiting uniqueness and
non-uniqueness for different $p>p_c$ is analyzed.
Numerous varied conjectures and problems are
proposed, with the hope of setting goals for
future research in percolation theory.
|
Full text: PDF
Pages: 71-82
Published on: October 8, 1996
|
Bibliography
-
M. Aizenman and G. R. Grimmett, (1991),
Strict monotonicity for critical
points in percolation and ferromagnetic models
J. Statist. Phys. 63, 817--835.
Math. Review 92i:82060.
-
E. Babson and I. Benjamini (1995), Cut sets in Cayley graphs,
preprint.
-
I. Benjamini and Y. Peres (1994), Markov chains indexed by trees,
Ann. Prob. 22, 219--243.
Math. Review 94j:60131.
-
I. Benjamini and O. Schramm (1996),
Conformal invariance of Voronoi percolation,
preprint.
Abstract and PostScript.
-
R. M. Burton and M. Keane (1989),
Density and uniqueness in percolation,
Comm. Math. Phy. 121, 501--505.
Math. Review 90g:60090.
-
M. Campanino, L. Russo (1985),
An upper bound on the critical percolation
probability for the three-dimensional cubic lattice,
Ann. Probab. 13, 478--491.
Math. Review 86j:60222.
-
J. Dodziuk (1984),
Difference equations, isoperimetric inequality
and transience of certain random walks,
Trans. Amer. Math. Soc. 284, 787--794.
Math. Review 85m:58185.
-
E. Ghys, A. Haefliger and A. Verjovsky eds (1991),
Group theory from a geometrical viewpoint, World Scientific.
Math. Review 93a:20001.
-
G. R. Grimmett (1989), Percolation, Springer-Verlag, New York.
Math. Review 90j:60109.
-
G. R. Grimmett and C. M. Newman (1990), Percolation in
$infty+1$ dimensions, in Disorder in physical systems,
(G. R. Grimmett and D. J. A. Welsh eds.), Clarendon Press, Oxford,
219--240.
Math. Review 92a:60207.
-
O. Häggström (1996),
Infinite clusters in dependent automorphism
invariant percolation on trees, preprint.
-
T. Hara and G. Slade (1989),
The triangle condition for percolation,
Bull. Amer. Math. Soc. (N.S.) 21, 269--273.
Math. Review 90b:60136.
-
H. Kesten (1980),
The critical probability of bond percolation on the
square lattice equals ½, Comm. Math. Phys. 74, 41--59.
Math. Review 82c:60179.
-
R. Langlands, P. Pouliot, and Y. Saint-Aubin (1994),
Conformal invariance in two-dimensional percolation,
Bull. Amer. Math. Soc. (N.S.) 30, 1--61.
Math. Review 94e:82056.
-
R. Lyons (1995),
Random walks and the growth of groups,
C. R. Acad. Sci. Paris Sir. I Math. 320, 1361--1366.
Math. Review 96e:60015.
-
R. Lyons (1996), Probability and trees,
preprint.
-
W. Magnus, A. Karrass and D. Solitar (1976),
Combinatorial group theory,
Dover, New York.
Math. Review 54#10423.
-
R. Meester (1994),
Uniqueness in percolation theory, Statistica
Neerlandica 48 (1994), 237--252.
Math. Review 96a:60082.
-
M. V. Men´shikov (1987),
Quantitative estimates and strong inequalities for
the critical points of a graph and its subgraph, (Russian)
Teor. Veroyatnost. i Primenen. 32,
599--602.
Eng. transl., Theory Probab. Appl. 32,
544--546.
Math. Review 89f:60122.
-
C. M. Newman and L. S. Schulman (1981),
Infinite clusters in percolation models,
J. Stat. Phys. 26, 613--628.
Math. Review 83e:82038.
-
L. Russo (1981),
On the critical percolation probabilities,
Z. Wahrsch. Verw. Gebiete 56, 229--237.
Math. Review 82i:60182.
-
J. C. Wierman (1989), AB Percolation: a brief survey,
in Combinatorics and graph theory 25,
Banach Center Publications, 241--251.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|