|
|
|
| | | | | |
|
|
|
|
|
Density fluctuations for a zero-range process on the percolation cluster
|
Patrícia C. Gonçalves, CMAT - U. Minho Milton D. Jara, Paris Dauphine |
Abstract
We prove that the density fluctuations for a zero-range process evolving on the $d$-dimensional supercritical percolation cluster, with
$dgeq{3}$, are given by a generalized Ornstein-Uhlenbeck process in the space of distributions $mc S'(bb R^d)$.
|
Full text: PDF
Pages: 382-395
Published on: September 8, 2009
|
Bibliography
- Andjel, Enrique Daniel. Invariant measures for the zero range processes. Ann. Probab. 10 (1982), no. 3, 525--547. MR0659526 (83j:60106)
- Antal, Peter; Pisztora, Agoston. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996), no. 2, 1036--1048. MR1404543 (98b:60168)
- Berger, Noam; Biskup, Marek. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007), no. 1-2, 83--120. MR2278453 (2007m:60085)
- Chang, Chih Chung. Equilibrium fluctuations of gradient reversible particle systems. Probab. Theory Related Fields 100 (1994), no. 3, 269--283. MR1305583 (96b:60248)
- Faggionato, Alessandra. Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008), 2217--2247. MR2469609
- Gonçalves, Patrícia; Jara, Milton. Scaling limits for gradient systems in random environment. J. Stat. Phys. 131 (2008), no. 4, 691--716. MR2398949 (2009d:82068)
- bibitem Geoffrey Grimmett. newblock {em Percolation}, volume 321 of {em Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}. newblock Springer-Verlag, Berlin, second edition, 1999. MR{1707339}
- Holley, Richard A.; Stroock, Daniel W. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. Res. Inst. Math. Sci. 14 (1978), no. 3, 741--788. MR0527199 (82g:60108)
- bibitem Claude Kipnis and Claudio Landim. newblock {em Scaling limits of interacting particle systems}, volume 320 of {em Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}. newblock Springer-Verlag, Berlin, 1999. MR{1707314}
- Mathieu, P.; Piatnitski, A. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2085, 2287--2307. MR2345229 (2008e:82033)
- Sidoravicius, Vladas; Sznitman, Alain-Sol. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004), no. 2, 219--244. MR2063376 (2005d:60155)
- Tartar, L. Homogénéisation et compacité par compensation.(French) Séminaire Goulaouic-Schwartz (1978/1979), Exp. No. 9, 9 pp., École Polytech., Palaiseau, 1979. MR0557520 (81c:73012)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|