![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Fractional Brownian Motion and the Markov Property
|
Philippe Carmona, Université Paul Sabatier Laure Coutin, Université Paul Sabatier |
Abstract
Fractional Brownian motion belongs to a class
of long memory Gaussian processes that can be represented
as linear functionals of an infinite dimensional Markov process.
This leads naturally to:
- An efficient algorithm to approximate the process.
- An ergodic theorem which applies to functionals of the type
$$int_0^t phi(V_h(s)),ds quadtext{where}quad V_h(s)=int_0^s h(s-u), dB_u,.$$
where $B$ is a real Brownian motion.
|
Full text: PDF
Pages: 95-107
Published on: October 27, 1998
|
Bibliography
-
J. Audounet and G. Montseny, Mod`eles non h'er'editaires
pour l'analyse et le contr^ole de syst`emes `a m'emoire longue, April
1995, Journées d'etude: les systemes non entiers en automatique, Bordeaux,
France.
-
J. Audounet, G. Montseny, and B.Mbodje, Optimal models
of fractional integrators and application to systems with fading memory,
1993, IEEE SMC's conference, Le Touquet (France).
-
J. Beran and N. Terrin, Testing for a change of the
long-memory parameter, Biometrika 83 (1996), no. 3, 627--638.
Math Review link
-
V.S. Borkar, Probability Theory: an advanced course, Universitext,
Springer, 1995.
Math Review link
-
N. Bouleau and D. L'epingle, Numerical methods for
stochastic processes, Wiley series in Probability and Mathematical
Statistics, John Wiley & Sons, Inc., 1994, ISBN 0-471-54641-0.
Math Review link
-
Ph. Carmona and L. Coutin, Simultaneous approximation of a
family of (stochastic) differential equations, Unpublished, June 1998.
-
Ph. Carmona, L. Coutin, and G. Montseny, Applications
of a representation of long memory Gaussian processes, Submitted to
Stochastic Processes and their Applications, June 1997.
-
Ph. Carmona, L. Coutin, and G. Montseny, A diffusive Markovian representation of fractional Brownian
motion with Hurst parameter less than $1/2$,
Submitted to Statistic and Probability Letters, November 1998.
-
N. Dunford and J.T. Schwartz, Linear Operators, Part I:
General Theory, Wiley Classics Library Edition Published 1988, John Wiley
and Sons, New York, 1988.
Math Review link
-
H. Graf, Long range correlations and estimation of the
self-similarity parameter, Ph.D. thesis, ETH Z"urich, 1983.
-
W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson,
On the self-similar nature of Ethernet traffic, IEEE/ACM Trans.
Networking 2 (1994), no.~1, 1--15.
-
B. Mandelbrot, Self-similar error clusters in communication and the
concept of conditional stationarity, IEEE Trans. Commun. Technol.
COM--13 (1965), 71--90.
-
B.B. Mandelbrot and Van Ness, Fractional brownian motions,
fractional noises and applications, SIAM Review 10 (1968), no.~4,
422--437.
-
Yu.A. Rozanov, Stationary random processes, Holden--Day, San
Francisco, 1966.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|