![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Pitman's 2M-X Theorem for Skip-Free Random Walks with Markovian Increments
|
B. M. Hambly, University of Oxford James B. Martin, Cambridge University Neil O'Connell, BRIMS, HP Labs |
Abstract
Let $(xi_k, kge 0)$ be a Markov chain on ${-1,+1}$
with $xi_0=1$ and transition probabilities
$P(xi_{k+1}=1| xi_k=1)=a>b=P(xi_{k+1}=-1|
xi_k=-1)$. Set $X_0=0$, $X_n=xi_1+cdots +xi_n$ and $M_n=max_{0le
kle n}X_k$. We prove that the process $2M-X$ has the same law as that
of $X$ conditioned to stay non-negative.
|
Full text: PDF
Pages: 73-77
Published on: August 21, 2001
|
Bibliography
-
Yu. Baryshnikov (2001), GUES and QUEUES. Probab. Theor. Rel. Fields
119,
256-274. Math.
Review 1 818 248
-
J. Bertoin (1992),
An extension of Pitman's theorem for spectrally positive
Lévy processes. Ann. Probab. 20, 1464 - 1483.
Math.
Review 93k:60191
-
Ph. Biane (1994), Quelques propriétés du mouvement brownien
dans un cone.. Stoch. Proc. Appl. 53, no. 2, 233-240. Math.
Review 95j:60129
-
P. Brémaud (1981),
Point Processes and Queues: Martingale Dynamics.
Springer-Verlag.
Math.
Review 82m:60058
-
P.J. Burke (1956),
The output of a queueing system. Operations Research
4,
no. 6, 699--704.
Math.
Review 18,707g
-
S.K. Foong and S. Kanno (1994),
Properties of the telegrapher's random
process with or without a trap. Stoch. Proc. Appl. 53, 147--173.
Math.
Review 95g:60089
-
B. Gaveau, T. Jacobson, L. Schulman and M. Kac (1984),
Relavistic extension
of the analogy between quantum mechanics and Brownian motion. Phys.
Rev. Lett. 53, no. 5, 419-422.
Math.
Review 85g:81045
-
J. Gravner, C.A. Tracy and H. Widom (2001),
Limit theorems for height
fluctuations in a class of discrete space and time growth models. J.
Stat. Phys. 102, nos. 5-6, 1085-1132. Math. Review number not available.
-
K. Johansson (2000), Shape fluctuations and random matrices. Commun.
Math. Phys. 209, 437-476.
Math.
Review 1 737 991
-
K. Johansson (1999),
Discrete orthogonal polynomial ensembles and the
Plancherel measure. Preprint 1999, to appear in Ann. Math. (xxx math.CO/9906120)
Math. Review number not available.
-
J.-F. le Gall (1986),
Une approche élémentaire des théorémes
de décomposition de Williams.
Seminaire de Probabilités
XX; Lecture Notes in Mathematics, Vol. 1204; Springer, 1986.
Math.
Review 89g:60219
-
M. Kac (1974), A stochastic model related to the telegrapher's equation.
Rocky Mountain J. Math. 4, 497-509.
Math.
Review 58 #23185
-
F.P. Kelly (1979), Reversibility and Stochastic Networks. Wiley.
Math.
Review 81j:60105
-
Wolfgang König and Neil O'Connell (2001),
Eigenvalues of the Laguerre
process as non-colliding squared Bessel processes. To appear in Elect.
Commun. Probab.. Math. Review number not available.
-
Wolfgang König, Neil O'Connell and Sebastien Roch (2001),
Non-colliding
random walks, tandem queues and discrete ensembles. Preprint. Math.
Review number not available.
-
H. Matsumoto and M. Yor (1999),
A version of Pitman's 2M-X theorem for
geometric Brownian motions. C.R. Acad. Sci. Paris 328, Série
I, 1067-1074.
Math.
Review 2000d:60134
-
Neil O'Connell and Marc Yor (2001),
Brownian analogues of Burke's theorem.
Stoch. Proc. Appl., to appear. Math. Review number not available.
-
Neil O'Connell and Marc Yor (2001),
A representation for non-colliding
random walks. Elect. Commun. Probab., to appear. Math. Review number
not available.
-
J. W. Pitman (1975),
One-dimensional Brownian motion and the three-dimensional
Bessel process. Adv. Appl. Probab.
7, 511-526.
Math.
Review 51 #11677
-
J. W. Pitman and L.C.G. Rogers (1981),
Markov functions. Ann. Probab.
9,
573-582.
Math.
Review 82j:60133
-
E. Reich (1957),
Waiting times when queues are in tandem. Ann. Math.
Statist. 28, 768-773.
Math.
Review 19,1203b
-
Ph. Robert (2000),
Réseaux et files d'attente: méthodes
probabilistes. Math. et Applications, vol. 35. Springer. Math. Review
number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|