|
|
|
| | | | | |
|
|
|
|
|
Sums of random Hermitian matrices and an inequality by Rudelson
|
Roberto I. Oliveira, IMPA |
Abstract
We give a new, elementary proof of a key inequality used by Rudelson in the derivation of his well-known bound for random sums of rank-one operators. Our approach is based on Ahlswede and Winter's technique for proving operator Chernoff bounds. We also prove a concentration inequality for sums of random matrices of rank one with explicit constants.
|
Full text: PDF
Pages: 203-212
Published on: June 8, 2010
|
Bibliography
- R. Adamczak; A. E. Litvak; A. Pajor; N. Tomczak-Jaegermann. Quantitative estimates of the convergence of
the empirical covariance matrix in log-concave ensembles. Journal
of the AMS 23 (2010), 535--561. Math. Review number not available.
- R. Ahlswede; A. Winter. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory 48 (2002), no. 3, 569--579. Math. Review 1889969
- A. Buchholz. Operator Khintchine inequality in non-commutative probability. Math. Ann. 319 (2001), no. 1, 1--16. Math. Review 1812816
- E. Candčs; J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems 23 (2007), no. 3, 969--985. Math. Review 2329927
- Z. Füredi; J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica 1 (1981), no. 3, 233--241. Math. Review 0637828
- S. Golden. Lower bounds for the Helmholtz function. Phys. Rev. (2) 137 1965 B1127--B1128. Math. Review 0189691
- N. Halko; P.-G. Martinsson; J. A. Tropp. Finding structure with randomness: Stochastic algorithms for constructing approximate matrix
decompositions. arXiv:0909.4061 (2009). Math. Review number not available.
- Z. Landau; A. Russell. Random Cayley graphs are expanders: a simple proof of the Alon-Roichman theorem. Electron. J. Combin. 11 (2004), no. 1, Research Paper 62, 6 pp. (electronic).Math. Review 2097328
- M. Ledoux; M. Talagrand. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23 (1991). Springer-Verlag, Berlin. Math Review 1102015
- F. Lust-Piquard; G. Pisier. Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 (1991), no. 2, 241--260. Math. Review 1150376
- S. Mendelson; A. Pajor. On singular values of matrices with independent rows. Bernoulli 12 (2006), no. 5, 761--773. Math. Review 2265341
- M. Rudelson. Random vectors in the isotropic position. J. Funct. Anal. 164 (1999), no. 1, 60--72. Math. Review 1694526
- D. Spielman; N.
Srivastava. Graph sparsification by effective resistances. Proceedings of the 40th annual ACM Symposium on Theory of Computing 2008. Math review number not available.
- C. J. Thompson. Inequality with applications in statistical mechanics. J. Mathematical Phys. 6 (1965), 1812--1813. Math. Review 0189688
- J. A. Tropp. On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 1--24. Math. Review 2419702
- R. Vershynin. Frame expansions with erasures: an approach through the non-commutative operator theory. Appl. Comput. Harmon. Anal. 18 (2005), no. 2, 167--176. Math. Review 2121508
- R. Vershynin. Spectral norm of products of random and deterministic matrices. To appear in Probab. Theory Related Fields. Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|