Pathwise uniqueness for reflecting Brownian motion in certain planar Lipschitz domains
Richard F. Bass, University of Connecticut Krzysztof Burdzy, University of Washington
Abstract
We give a simple proof that in a Lipschitz domain in
two dimensions with Lipschitz constant
one, there is pathwise uniqueness for the Skorokhod
equation governing reflecting Brownian motion.
M. Barlow, K. Burdzy, H. Kaspi and A. Mandelbaum.
Variably skewed Brownian motion Electr. Comm. Probab. 5
(2000), paper 6, pp. 57-66.
Math. Review 2001j:60146
R. Bass, K. Burdzy and Z. Chen. Uniqueness for
reflecting Brownian motion in lip domains Ann. I. H.
Poincar'e 41 (2005) 197-235.
Math. Review 2005k:60174
R. Bass and E.P. Hsu, Pathwise uniqueness for reflecting
Brownian motion in Euclidean domains. Probab. Th. Related Fields 117 (2000) 183-200.
Math. Review 2001e:60164
I. Karatzas and S.E. Shreve. Brownian
Motion and Stochastic Calculus, 2nd Edition, Springer Verlag, New
York, 1991.
Math. Review 92h:60127
D. Revuz and M. Yor, Continuous Martingales and
Brownian Motion, 3rd ed. Springer, Berlin, 1999.
Math. Review 2000h:60050