|
|
|
| | | | | |
|
|
|
|
|
Integral criteria for transportation cost inequalities
|
Abstract
Abstract. In this paper, we provide a characterization of a large class of transportation-cost inequalities in terms of exponential integrability of the cost function under the reference probability measure. Our results completely extend the previous works by Djellout, Guillin and Wu cite{DGW03} and Bolley and Villani cite{BV03}.
|
Full text: PDF
Pages: 64-77
Published on: June 12, 2006
|
Bibliography
- S. G. Bobkov, I. Gentil, and M. Ledoux. Hypercontractivity
of Hamilton-Jacobi equations. Journal de
Mathématiques Pures et
Appliquées 80(7) (2001),
669-696. Math.
Review MR1846020 (2003b:47073)
- F. Bolley, A. Guillin, and C. Villani. Quantitative
concentration inequalities for empirical
measures on non-compact spaces. To appear in Prob. Th. Rel.
Fields. (2005). Math. Review number not available.
- F. Bolley and C. Villani. Weighted
Csiszar-Kullback-Pinsker inequalities and applications
to transportation inequalities. Annales de la
Faculté des Sciences de Toulouse 14
(2005), 331-352. Math.
Review MR2172583
- V. V. Buldygin and Yu.V. Kozachenko. Metric
characterization of random variables and
random processes. Translations of Mathematical Monographs, 188.
American Mathematical Society Math.
Review MR1743716 (2001g:60089)
- P. Cattiaux and N. Gozlan. Deviations bounds and
conditional principles for thin sets. To appear in Stoch.
Proc. Appl. (2005). Math. Review number not available.
- P. Cattiaux and A. Guillin. Talagrand’s like
quadratic transportation cost inequalities. Preprint.
(2004). Math. Review number not available.
- A. Dembo and O. Zeitouni. Large deviations
techniques and applications. Second edition.
Applications of Mathematics 38. Springer Verlag (1998).Math.
Review MR1619036 (99d:60030)
- H. Djellout, A. Guillin and L. Wu. Transportation
cost-information inequalities for
random dynamical systems and diffusions. Annals of
Probability, 32(3B) (2004),
2702–2732. Math.
Review MR2078555 (2005i:60031)
- I. Gentil, A. Guillin and L. Miclo. Modified logarithmic
Sobolev inequalities and transportation inequalities.
Probab. Theory Related Fields 133
(3) (2005), 409-436. Math.
Review MR2198019
- N. Gozlan. Conditional principles for random weighted
measures. ESAIM Probab. Stat. 9
(2005), 283-306 (electronic). Math.
Review MR2174872
- N. Gozlan. Principe conditionnel de Gibbs pour des
contraintes fines approchées et
inégalités de transport. PhD Thesis,
Université Paris 10-Nanterre, (2005). Math. Review number
not available.
- N. Gozlan and C. Léonard. A large deviation
approach to some transportation cost
inequalities. Preprint. (2005). Math. Review number not available.
- Yu. V. Kozachenko and E. I. Ostrovskii. Banach spaces of
random variables of sub-Gaussian type. (Russian) Theor.
Probability and Math. Statist. 3
(1986), 45-56. Math.
Review MR0882158 (88e:60009)
- K. Marton. A simple proof of the blowing-up lemma. IEEE
Trans. Inform. Theory. 32(3) (1986),
445-446.Math.
Review MR0838213 (87e:94018)
- K. Marton. Bounding $overline{d}$-distance by
informational divergence: a method to prove measure concentration.
Ann. Probab. 24(2) (1996),
857-866. Math.
Review MR1404531 (97f:60064)
- F. Otto and C. Villani. Generalization of an inequality by
Talagrand and links with the logarithmic Sobolev inequality. J.
Funct. Anal. 173(2) (2000), 361-400. Math.
Review MR1760620 (2001k:58076)
- Talagrand, M. Transportation cost for Gaussian and other
product measures.
Geom. Funct. Anal. 6(3)
(1996), 587-600. Math.
Review MR1392331 (97d:60029)
- C. Villani. Topics in optimal transportation.
Graduate Studies in Mathematics, 58. American
Mathematical Society, Math.
Review MR1964483 (2004e:90003)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|