Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2182

On Fixation of Activated Random Walks

Ori Gurel-Gurevich, Microsoft Research
Gideon Amir, University of Toronto

Abstract

We prove that for the Activated Random Walks model on transitive unimodular graphs, if there is fixation, then every particle eventually fixates, almost surely. We deduce that the critical density is at most 1. Our methods apply for much more general processes on unimodular graphs. Roughly put, our result apply whenever the path of each particle has an automorphism invariant distribution and is independent of other particles' paths, and the interaction between particles is automorphism invariant and local. In particular, we do not require the particles path distribution to be Markovian. This allows us to answer a question of Rolla and Sidoravicius, in a more general setting then had been previously known (by Shellef).

Full text: PDF




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. The preferred way is to send a scanned (jpeg or pdf) copy of the signed copyright form to the managing editor Philippe Carmona at ejpecpme@math.univ-nantes.fr. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2182