A note on percolation on Zd: isoperimetric profile via exponential cluster repulsion
Gabor Pete, Microsoft Research
Abstract
We show that for all p>p_c(Z^d) percolation parameters, the probability that the cluster of the origin is finite but has at least t vertices at distance one from the infinite cluster is exponentially small in t. We use this to give a short proof of the strongest version of the important fact that the isoperimetric profile of the infinite cluster basically coincides with the profile of the original lattice. This implies, e.g., that simple random walk on the largest cluster of a finite box [-n,n]^d with high probability has L^infty-mixing time Theta(n^2), and that the heat kernel (return probability) on the infinite cluster a.s. decays like p_n(o,o)=O(n^{-d/2}). Versions of these results have been proven by Benjamini and Mossel (2003), Mathieu and Remy (2004), Barlow (2004) and Rau (2006). For general infinite graphs, we prove that anchored isoperimetric properties survive supercritical percolation, provided that the probability of the cluster of the origin being finite with large boundary decays rapidly; this is the case for a large class of graphs when p is close to 1. As an application (with the help of some entropy inequalities), we give a short conceptual proof of a theorem of Angel, Benjamini, Berger and Peres (2006): the infinite percolation cluster of a wedge in Z^3 is a.s. transient whenever the wedge itself is transient.
Full text: PDF | PostScript
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings.
The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article.
Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to
Philippe Carmona
Laboratoire Jean Leray UMR 6629
Universite de Nantes,
2, Rue de la Houssinière BP 92208
F-44322 Nantes Cédex 03
France
You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona.
The preferred way is to send a scanned (jpeg or pdf) copy of the signed copyright form to the managing editor Philippe Carmona at ejpecpme@math.univ-nantes.fr.
If a paper has several authors, the corresponding author signs the copyright form
on behalf of all the authors.