Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=1727

A Note on Occupation Times of Stationary Processes

Marina Kozlova, Abo Akademi University, Finland
Paavo Salminen, Abo Akademi University, Finland

Abstract

Consider a real valued stationary process $X={X_s:, sinRR}$. For a fixed $tin RR$ and a set $D$ in the state space of $X$, let $g_t$ and $d_t$ denote the starting and the ending time, respectively, of an excursion from and to $D$ (straddling $t$). Introduce also the occupation times $I^+_t$ and $I^-_t$ above and below, respectively, the observed level at time $t$ during such an excursion. In this note we show that the pairs $(I^+_t, I^-_t)$ and $(t-g_t, d_t-t)$ are identically distributed. This somewhat curious property is, in fact, seen to be a fairly simple consequence of the known general uniform sojourn law which implies that conditionally on $I^+_t + I^-_t = v$ the variable $I^+_t$ (and also $I^-_t$) is uniformly distributed on $(0,v)$. We also particularize to the stationary diffusion case and show, e.g., that the distribution of $I^-_t+I^+_t$ is a mixture of gamma distributions.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. The preferred way is to send a scanned (jpeg or pdf) copy of the signed copyright form to the managing editor Philippe Carmona at ejpecpme@math.univ-nantes.fr. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=1727