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Abstract

We define a Fractional Brownian Motion indexed by a sphere, or more generally by a compact
rank one symmetric space, and prove that it exists if, and only if, 0 < H < 1/2. We then
prove that Fractional Brownian Motion indexed by an hyperbolic space exists if, and only if,
0 < H <1/2. At last, we prove that Fractional Brownian Motion indexed by a real tree exists
when 0 < H < 1/2.

1 Introduction

Since its introduction [10, 12], Fractional Brownian Motion has been used in various areas of
applications (e.g. [14]) as a modelling tool. Its success is mainly due to the self-similar nature
of Fractional Brownian Motion and to the stationarity of its increments. Fractional Brownian
Motion is a field indexed by R?. Many applications, as texture simulation or geology, require
a Fractional Brownian Motion indexed by a manifold. Many authors (e.g. [13, 8, 1, 7, 2]) use
deformations of a field indexed by R¢. Self-similarity and stationarity of the increments are
lost by such deformations: they become only local self-similarity and local stationarity. We
propose here to build Fractional Brownian Motion indexed by a manifold. For this purpose, the
first condition is a stationarity condition with respect to the manifold. The second condition
is with respect to the self-similar nature of the increments. Basically, the idea is that the
variance of the Fractional Brownian Motion indexed by the manifold should be a fractional
power of the distance. Let us be more precise.

The complex Brownian motion B indexed by R? d > 1, can be defined [11] as a centered
Gaussian field such that:

B(0) = 0 (as.),
E|By (M) — By(M)|*> = ||M —M'|| M,M' € R?,
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where ||[M — M’|| is the usual Euclidean distance in RY. The complex Fractional Brownian
Motion By of index H, 0 < H < 1, indexed by R, d > 1, can be defined [10, 12] as a centered
Gaussian field such that:

By (0) 0 (as.),
E|Bu(M) - Bu(M)2 = ||M — M'|[?* M, M cR?.

The complex Brownian motion B indexed by a sphere Sy, d > 1, can be defined [11] as a
centered Gaussian field such that:

B(O) = 0 (as.),
E|B(M) — B(M")]* = d(M,M') M,M' €S,

where O is a given point of Sy and d(M, M’) the distance between M and M’ on the sphere
(that is, the length of the geodesic between M and M’). Our first aim is to investigate the
fractional case on Sy. We start with the circle S;. We first prove that there exists a centered
Gaussian process (called Periodical Fractional Brownian Motion, in short PFBM) such that:

By(O) = 0 (as.),
E|By (M) — By(M)> = d&*"(M,M') M,M' €S, ,

where O is a given point of S; and d(M, M') the distance between M and M’ on the circle, if
and only if, 0 < H < 1/2. We then give a random Fourier series representation of the PFBM.
We then study the general case on S;. We prove that there exists a centered Gaussian field
(called Spherical Fractional Brownian Motion, in short SEBM) such that:

Bg(0) = 0 (as.), (1)
E|By(M) — By (M)|*> = d&**(M,M') M,M' €Sy, (2)

where O is a given point of Sy and d(M, M’) the distance between M and M’ on Sy, if and
only, if 0 < H < 1/2. We then extend this result to compact rank one symmetric spaces (in
short CROSS).

Let us now consider the case of a real hyperbolic space Hy;. We prove that there exists a
centered Gaussian field (called Hyperbolic Fractional Brownian Motion, in short HFBM) such
that:

By(0) = 0 (as.), (3)

E[By(M)—Bu(M")* = d*"(M,M') M,M' € Hy, (4)

where O is a given point of Hy and d(M, M’) the distance between M and M’ on Hy, if, and
only if, 0 < H < 1/2.

At last, we consider the case of a real tree (X,d). We prove that there exists a centered
Gaussian field such that:

By(0) = 0 (as.),
E|By(M) — By (M"))? = & (M,M') M,M' € X ,

where O is a given point of X, for 0 < H < 1/2.
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2 Periodical Fractional Brownian Motion
Theorem 2.1

1. The PFBM exists, if and only if, 0 < H < 1/2.

2. Assume 0 < H < 1/2. Let us parametrize the points M of the circle Sy of radius r by
their angles x. By can be represented as:

Bu(w) = V&Y duen(e™ 1), (5)

nez*

where

Inlm  om
— w2t cos(u)du
d, = \/ Jo ) , (6)
V2m|n|l/2+H

and (en)nez 18 a sequence of i.4.d. complex standard normal variables.

Proof of Theorem 2.1
Without loss of generality, we work on the unit circle S1: 7 = 1. Let M and M’ be parametrized
by x, 2’ € [0,27[. We then have:

dM,M") = d(z,2")
= inf(jz —2'|,27r — |z — 2|) .

dH(Z',Z‘/) d;f dzH(x7x/)

= inf(|lz —2']?H, 21 — |z — 2'|)?H) .
The covariance function of Bpy, if there exists, is:
/ 1 / /
Ry(z,z") = i(dH(a?,O)erH(x,O)de(x,:E)) .

Let us expand the function © — dy(x,0) in Fourier series:

dp(z,0) = anei"”. (7)

nez

We will see that the series Z |fr| converges. It follows that equality (7) holds pointwise.
ne”Z
Since dg(0,0) = 0, Z fn =0. The function dg is odd: f_, = f,. We can therefore write,

ne”Z
no matter if z — 2’ is positive or negative:

dH(fpvx/) = anem(xix/)

neEZ

_ Z fn(ein(z—m/) _ 1) )

nezZ*
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We now prove that Ry is a covariance function if and only if 0 < H < 1/2.

i XX Ry (i,25) = %Z Jn i Aij <€imi +e M — e_i”(“_’“'j))

2,j=1 nez i,j=1
2
1 P -
= 3 2 S e 5)
nez* i=1

Let us study the sign of f,,n € Z*. Since f_,, = fy, let us only consider n > 0.

1 U
fo = —/ 2?1 cos(nx)dx
0

™

1 nm
2H
= — u“" cos(u)du .
7Tn1+2H/o w

1. n odd.

2km+m w/2

/ u?*f cos(u)du = / cos(v)[(v + 2kn)*H — (2km + 7 —v)*H]dv < 0.
2km 0
2. n even.
2(k+1)7 /2
/ u*H cos(u)du = / cos(v) [(v+ 2km)?H — (2km + 7 — v)?H
2km 0

—(2km + 7 4 )" + (2km + 27 — 0)?H ] dv .

Using the concavity/convexity of the functions x — x2f

(v + 2km)* — 2km + 7 —v)2H — (2k7 + 7 4+ v)?H + (2k7 + 27 — v)*H] is negative when
H < 1/2 and positive when H > 1/2.

, one sees that

1. H <1/2 All the f, are negative and (8) is positive.

2. H > 1/2. We check that, if By exists, then we should have:
27 2

27 2
El [ Buwerta| = / / (di (£,0) + dia (5, 0) — s (s, £))e™ =) dtds
0 0

= —47T2fn .

0

All the f,,, with n even, are positive, which constitutes a contradiction.

In order to prove the representation (5), we only need to compute the covariance:

_ 1 ) o ) ,
EBp(v)Bu(r) = 3 ( fo= Y die™ = " dae™ 4 Y drem T >>

nez* nez* nez*
Ry (x,2') .
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3 Spherical Fractional Brownian Motion

Theorem 3.1
1. The SFBM, defined by (1), (2), exists if, and only if, 0 < H < 1/2.

2. The same holds for CROSS: the Fractional Brownian Motion, indexed by a CROSS,
exists if, and only if, 0 < H < 1/2.

Corollary 3.1
Let (M,d) be a complete Riemannian manifold such that M and a CROSS are isometric.
Then the Fractional Brownian Motion indexed by M and defined by:

By(O) = 0 (as.),
E|By(M) — By (M")* = d"(M,M’') M,M' e M,

exists if and only if 0 < H < 1/2.

Proof of Theorem 3.1

Let us first recall the classification of the CROSS, also known as two points homogeneous
spaces [9, 17]: spheres Sq, d > 1, real projective spaces P4(R), d > 2, complex projective
spaces P4(C), d = 2k, k > 2, quaternionic projective spaces P¢(H), d = 4k, k > 2 and Cayley
projective plane P16, [6] has proved that Brownian Motion indexed by CROSS can be defined.
The proof of Theorem 3.1 begins with the following Lemma, which implies, using [6], the
existence of the Fractional Brownian Motion indexed by a CROSS for 0 < H < 1/2.

Lemma 3.1
Let (X, d) be a metric space. If the Brownian Motion B indexed by X and defined by:

B(O) = 0 (as.),
E|B(M) - B(M"*> = d(M,M') M,M' € X,
exists, then the Fractional Brownian Motion By indexed by X and defined by:
By(0) = 0 (a.s.),
E|By(M) — By (M"))? = & (M, M) M,M' € X ,
exists for 0 < H <1/2.

Proof of Lemma 3.1
For A > 0,0 < a < 1, one has:

with
+oo —u
1—e
C(x = /0 —ulJrOt du .

We then have, for 0 < H < 1/2:

1 +oo e—a:d(M,M/) -1

PE(M MY = ——/ ——dzx .
(M, M) Corr J, ol t2H z
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Let us remark that:
b

o Td(M, M) _ ]E<e¢\/ﬂ(B(M)—B(M'))>

so that:

MM M) = _CQH/O e d

Denote by Ry (M, M’) the covariance function of By, if exists:

Ry (M, M) = %(dH(O,M)+dH(M’,O)—dH(M,M’)).

Let us check that Ry is positive definite:

p
> NN Ru (M, Mj) =

ij=1
) oo ijzl AN, {IE (ei\/ﬂB(Mj)) 1E (e—i\/ﬂB(Mj)) _E (ei\/ﬂ(B(Mj)—B(Mj))) - 1}
_202H /0 RSy dx

(1= eivEmBn) ‘2
dz .

x1+2H (9)

1 /+°° E ‘Zle Ai

202]—[ 0

(9) is clearly positive and Lemma 3.1 is proved.

We now prove by contradiction that the Fractional Brownian Motion indexed by a CROSS
does not exist for H > 1/2. The geodesic of a CROSS are periodic. Let G be such a geodesic
containing 0. Therefore, the process By (M), M € G is a PFBM. We know from Theorem
2.1 that PFBM exits if, and only if, 0 < H < 1/2.

Proof of Corollary 3.1 B
Let ¢ be the isometric mapping between M and the CROSS and let d (resp. d) be the metric
of M (resp. the CROSS). Then, for all M, M’ € M, one has:

d(M,M') = d(¢(M),$(M")) .

Let O be a given point of M and O = ¢(O). Denote by Ry (resp. Ry ) the covariance function
of the Fractional Brownian Motion indexed by M (resp. the CROSS).

Ry (M, M’) (d*" (O, M) + 2" (O, M) — " (M, M"))

1
>
= S0, 6(00)) + (0, 6(M")) — P ((M), (M)
= Ru(6(M), 6(M") .

It follows that EH is positive definite if and only if, Ry is positive definite. Corollary 3.1 is
proved.
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4 Hyperbolic Fractional Brownian Motion

Let us consider real hyperbolic spaces Hy:

d
Hy = {(z1,...,24), z1 >0, 27 —fo =1},
2
with geodesic distance:
d(M,M") = Arccosh|[M,M'],
where
d
(M, M'] = mzz)— Z%l‘; .
2
The HFBM is the Gaussian centered field such that:
By(O) = 0 (as.),
E|By(M) — By (M"))? = & (M,M') M,M' € Hy,

where O is a given point of Hy.

Theorem 4.1
The HFBM exists if, and only if, 0 < H < 1/2.

Since the Brownian Motion indexed by a real hyperbolic space can be defined [4, 5], Lemma
3.1 implies the existence of HFBM when 0 < H < 1/2.

Let H be a real function. [5, Prop. 7.6] prove that if H(d(M,M’)) is negative definite, then
H(z) = O(z) as & — +o0. It follows that d? (M, M"), when H > 1/2, is not negative definite:
the HFBM, when H > 1/2 does not exist.

Corollary 4.1
Let (M, d) be a complete Riemannian manifold such that M and Hy are isometric. Then the
Fractional Brownian Motion indexed by M and defined by:

Bp(0) = 0 (as.),
E|Buy(M) = By(M")* = d"(M, M) M,M' e M,

exists if, and only, if 0 < H < 1/2.

The proof of Corollary 4.1 is identical to the proof of Corollary 3.1.

5 Real trees

A metric space (X,d) is a real tree (e.g. [3]) if the following two properties hold for every
z,y € X.

e There is a unique isometric map f,, from [0,d(z,y)] into X such that f,,(0) = z and
Jay(d(z,y)) =y
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e If ¢ is a continuous injective map from [0, 1] into X, such that ¢(0) = z and ¢(1) = v,
we have

¢([0,1]) = fa,y ([0, d(z, y)])-

Theorem 5.1
The Fractional Brownian Motion indezed by a real tree (X, d) exists for 0 < H < 1/2.

[16]

proves that the distance d is negative definite. It follows from [15] that function

1
R(z,y) = i(d(O,x) +d(0,y) — d(z,y)) is positive definite. Lemma 3.1 then implies theorem

5.1.
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