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Abstract

We present a class of graphs where simple random walk is recurrent, yet two independent
walkers meet only finitely many times almost surely. In particular, the comb lattice, obtained
from Z2 by removing all horizontal edges off the x-axis, has this property. We also conjecture
that the same property holds for some other graphs, including the incipient infinite cluster for
critical percolation in Z2.

1 Introduction

In “Two Incidents” [7], George Pólya describes the incident that led him to his celebrated
results on random walks on Euclidean lattices:

“. . . he and his fiancée (would) also set out for a stroll in the woods, and then sud-
denly I met them there. And then I met them the same morning repeatedly, I don’t
remember how many times, but certainly much too often and I felt embarrassed: It
looked as if I was snooping around which was, I assure you, not the case. I met
them by accident - but how likely was it that it happened by accident and not on
purpose?”

Pólya formulated the problem of the meeting of two walkers for random walks on a Euclidean
lattice; in that case, it reduces to the problem of a single walker returning to his starting point.
As we show in this paper, these two problems can have different answers when the ambient
graph is not transitive.
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Figure 1: Comb lattice (Comb(Z))

Call a graph G recurrent if simple random walk on it is recurrent. Say that a graph G has
the finite collision property if two independent simple random walks X,Y on G starting
from the same vertex meet only finitely many times, i.e., |{n : Xn = Yn}| <∞, almost surely.
Our goal is to present a class of recurrent graphs with the finite collision property.

Definition Given a graph G, let Comb(G) be the graph with vertex set V (G)×Z and edge
set

{[(x, n), (x,m)] : |m− n| = 1} ∪ {[(x, 0), (y, 0)] : [x, y] is an edge in G} .

In words, this means that we attach a copy of Z at each vertex of the graph G. See Fig 1 for
a picture of Comb(Z). Clearly, if G is recurrent, so is Comb(G).

Theorem 1.1 LetG be any recurrent infinite graph with constant vertex degree. Then Comb(G)
has the finite collision property.

We note the following points.

• Liggett [5] has given examples of symmetric recurrent Markov chains for which two
independent copies of the chain collide only finitely many times. Those examples are not
simple random walks on graphs, however.

• If X,Y are independent random walks on a graph starting from a vertex v, then the
expected number of meetings between them is

∑

n

∑

w
(p(n)(v, w))2, where p(n) is the n-

step transition function. Now,

p(2n)(v, v) =
∑

w

(p(n)(v, w))2
π(v)

π(w)
,
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where π(w) denotes the degree of w. Therefore, if the expected number of meetings
between two independent walkers is finite, so is

∑

n
p(2n)(v, v), and hence the graph is

transient.

The converse is true for bounded degree graphs because then π(v)
π(w) is bounded away from

zero. This converse can fail when the degrees are unbounded as the following example
shows: Consider Z+ and add 2n disjoint paths of length 2 between n and n+ 1. Then,
X2n and Y2n are just random walks on Z+ with a bias of 1

3 to the right and hence
the graph is transient. However they meet infinitely often almost surely (the difference
eventually coincides with an unbiased random walk on Z and hence visits zero infinitely
often).

• Recurrent transitive graphs cannot have the finite collision property. This is because
transitivity clearly implies that the number of meetings has a Geometric distribution,
whence it is finite only if it has finite expectation.

2 Proof of Theorem 1.1

Proof of Theorem 1.1 As noted earlier, Comb(G) is recurrent. We only need to prove
the finite collision property. Let X and Y be independent simple random walks (SRWs) on
Comb(G) starting from the same vertex (o, 0). We make the following definitions.

Zn,`: = |{(N,L) : n ≤ N ≤ 2n, ` ≤ L ≤ 2` and XN = YN = (v, L) for some v ∈ G}|.
An,`: = {Zn,` > 0}.
Wn,`: =

∑

k= `
2
,`,2`

Zn,k +
∑

k= `
2
,`,2`

Z2n,k.

(Here |S| denotes the number of elements of S.)
Let d denote the common degree of vertices in G. In what follows, C,C1, C2 etc. will denote
positive finite constants whose values may change from one appearance to another.

Lemma 2.1 E[Zn,`] ≤ C`n−1/4 for some finite constant C, ∀n, ` ≥ 1.

Remark For the case when G = Z, i.e., for Comb(Z), this lemma is suggested by the fact
that

p(2n)(0, 0) ∼
√
2

Γ(1/4)
n−3/4. (1)

See Proposition 18.4 in Woess [8] for a proof of (1).

Proof (Lemma 2.1) We generate the random walks X and Y in the following manner. Let
U and U ′ be independent simple random walks on G starting from a vertex o. Let V and V ′

be independent simple random walks on Z, with the modification that they have a self-loop
probability of d

d+2 at 0. Let Kn and K ′n be the number of transitions of V and V ′ from 0 to
0 in the first n steps. Then set

Xn = (UKn , Vn) and Yn = (U ′K′

n
, V ′n).

It is clear that X and Y are independent simple random walks on Comb(G), both starting
from (o, 0).
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Now fix any L ∈ Z and consider

P[Xn = Yn = (v, L) for some v ∈ G] =
∞
∑

k=0

∞
∑

k′=0

P[Vn = V ′n = L;Kn = k,K ′n = k′;Uk = U ′k′ ]

=
∑

k,k′

P[Vn = V ′n = L;Kn = k,K ′n = k′]P[Uk = U ′k′ ].

Given two paths P1,P2 of lengths i and j in G starting from o and having the same endpoint
w, let P be the path obtained by traversing P1 first and returning to o via P2. Then

P[{Uk}k≤i+j = P] = P[{Uk}k≤i = P1]P[{U ′k}k≤j = P2].

by our assumption of constant degrees. Summing over all possible w and all P1,P2, we get

P[Ui = U ′j |U0 = U ′0 = v] = P[Ui+j = v|U0 = v]. (2)

Moreover, for SRW U on any infinite graph with bounded degrees,

P[Un = o|U0 = o] ≤ C√
n
, (3)

for some constant C (not depending on o). For a proof, see Woess [8], Corollary 14.6 .
From (2) and (3) we get

P[Xn = Yn = (v, L) for some v ∈ G] ≤ P[Vn = V ′n = L;Kn = K ′n = 0] (4)

+ CE

[

1(Vn = V ′n = L;Kn +K ′n > 0)
√

Kn +K ′n

]

.

To bound this quantity we think of Vn as being generated in the following manner. Take
a simple random walk {Sn} on Z (no self-loop at 0) starting from 0 and let {Gi} be i.i.d.
Geometric( d

d+2 ) random variables. To be precise, this means that P[Gi = k] = ( d
d+2 )

k 2
d+2

for k ≥ 0. Then we generate V by following the path S except that at the ith visit to the
origin by S, the walk V stays there for Gi steps before taking the next step according to S.
Similarly, V ′ is generated using S′ and {G′i}.

Then let Hn =
n/2
∑

i=1

1(Si = 0) and similarly define H ′n. Then, either Kn ≥ Rn :=
Hn
∑

i=1

Gi or else

Kn ≥ n
2 . Therefore the second summand on the right in (4) can be bounded by (omitting the

constant C)

E

[

1(Vn = V ′n = L;Rn +R′n > 0)
√

(Rn ∧ n
2 ) + (R′n ∧ n

2 )

]

+P[Vn = V ′n = L;Rn = R′n = 0]. (5)

Condition on {Si : i ≤ n/2} and {Gi : i ≤ Hn} and on their primed counterparts. If it
happens that max{Rn, R

′
n} < n

4 , then V and V ′ have at least n/4 more steps to go and hence

the conditional probability that Vn = V ′n = L is at most C2

n (because P[Vn/4 = L′] ≤ C√
n
for

any L′). Thus the first term in (5) can be bounded by

C ′E

[

1(Rn +R′n > 0)
√

Rn +R′n

1

n
+
1
(

max{Rn, R
′
n} > n

4

)

√
n

]

. (6)

We recall the following facts
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• E
[

H
−1/2
n 1 (Hn ≥ 1)

]

≤ C1n
−1/4. To see this, consider

E
[

H−1/2
n 1 (Hn ≥ 1)

]

≤ 1

n1/4
+

n1/2
∑

k=1

P[Hn = k]√
k

≤ 1

n1/4
+

C1

n1/2

n1/2
∑

k=1

1√
k

(

since P[Hn = k] ≤ C

n1/2
∀k
)

≤ C1n
−1/4.

• If {Gi} are i.i.d. Geometric(p) random variables, then

E













1

(

r
∑

i=1

Gi 6= 0

)

√

r
∑

i=1

Gi













≤ C(p)√
r
. (7)

(Let µ = E[Gi]. If
1
r

r
∑

i=1

Gi > µ− ε, then the random variable in (7) is less than 1√
r(µ−ε)

.

The probability that 1
r

r
∑

i=1

Gi is less than µ− ε decays exponentially, by Cramér’s theo-

rem).

These facts immediately give

E

[

1(Rn +R′n > 0)
√

Rn +R′n

]

≤ C3

n1/4
.

We ultimately want to get a bound for P[Xn = Yn = (v, L) for some v ∈ G]. From what we
have done so far this is bounded by the sum of the following three terms

• The first term in (6) is bounded by C4n
−5/4.

• The second term in (6) is bounded by C5P[Rn >
n
4 ]/
√
n. This decays super-polynomially.

• The second term in (5) and the first term in (4) are together bounded by

C6P[Vn = V ′n = L,Rn = R′n = 0].

To bound P[Vn = V ′n = L,Rn = R′n = 0], condition on {Si : i ≤ n
2 }, {Gi : i ≤ n

2 } and
their primed versions as before. Since the probability that a simple random walk on Z
does not return to zero up to time n is asymptotic to C√

n
, we can easily deduce that

P[Vn = V ′n = L and Rn = R′n = 0] = O

(

1

n2

)

.

Thus we get

P[Xn = Yn = (v, L) for some v ∈ G] ≤ C

n5/4
for every L ∈ Z, n ≥ 1. (8)
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Now,

E[Zn,`] =

2n
∑

N=n

2
∑̀

L=`

P[XN = YN = (v, L) for some v ∈ G]

≤ n`
C

n5/4
= C

`

n1/4
,

as claimed.

Note that from the above lemma we also get

E[Wn,`] ≤ C
`

n1/4
for all n, ` ≥ 1 and some constant C <∞. (9)

Lemma 2.2 Fix 0 < α < 1. There is a constant C > 0 (depending on α but not on ` or n)
such that for all n, ` with 1 ≤ ` < 2(2n)1/2α, we have E[Wn,`|An,`] ≥ C`α.

Proof (Lemma 2.2) Suppose An,` occurs. Then the two random walks collide at a time N
with n ≤ N ≤ 2n, and at some vertex (v, L) with ` ≤ L ≤ 2`. Then inWn,` we are counting all
collisions that occur for the next 2n steps or till one of the walks reaches (v, L± `

2 ), whichever

occurs earlier. By considering only collisions that occur before one of them hits (v, L± `
2 ) the

problem is reduced to one about random walks on a segment of Z.
More precisely, let U, V be two independent random walks on Z starting from 0. Let TU be
the first time U hits ± `

2 and similarly define TV . If

Yn,` =

2n∧TU∧TV
∑

k=0

1(Uk = Vk),

then given that the event An,` occurs, Wn,` is stochastically larger than Yn,`. Therefore, if
2n ≥ (`/2)2α, then

E[Wn,`|An,`] ≥ E[Yn,`]

≥
(`/2)2α
∑

k=0

P[Uk = Vk;TU ∧ TV > k]

≥





(`/2)2α
∑

k=0

P[Uk = Vk]



− (`/2)2αP[TU ∧ TV ≤ (`/2)2α]

≥
(`/2)2α
∑

k=0

C ′√
k
− (`/2)2α2P[TU ≤ (`/2)2α],

since for independent SRWs U, V on Z, we have P[Uk = Vk] ∼ C ′k−1/2. Observe that
P[TU ≤ (`/2)2α] tends to zero faster than any polynomial in `. Therefore,

E[Wn,`|An,`] ≥ C`α.

This proves the lemma.
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From the two lemmas above, given α < 1 we have constants C1, C2 such that

E[Wn,`] ≤ C1
`

n1/4
for every `, n, (10)

E[Wn,`|An,`] ≥ C2`
α for ` ≤ 2(2n)1/2α, (11)

whence we get

P[An,`] ≤
E[Wn,`]

E[Wn,`|An,`]
≤ C

`1−α

n1/4
for ` ≤ 2(2n)1/2α, (12)

for yet another constant C.
Now we let n, ` satisfying ` ≤ 2(2n)1/2α run over powers of 2, and get

∞
∑

r=0

1+ r+1

2α
∑

k=0

P[A2r,2k ] ≤
∞
∑

r=0

1+ r+1

2α
∑

k=0

C
2k(1−α)

2r/4
by (12)

≤
∞
∑

r=0

C ′
2r(1−α)/2α

2r/4

< ∞ if α > 2
3 .

Thus almost surely only finitely many of the events A2r,2k for k ≤ 1 + r+1
2α occur. This shows

that if 2/3 < α < 1, then the set

{n : Xn = Yn = (v, `) for some v ∈ G and ` with 1 ≤ |`| ≤ 2(2n)1/2α}

is finite almost surely (since each such (n, `) is contained in one of the above sets). We proved
this for 1 ≤ ` ≤ 2(2n)1/2α. By symmetry, the same holds for negative `. The number of
meetings on the backbone, i.e., on {` = 0}, is finite, by (8).
However, {n : |Vn| > 2(2n)1/2α or |V ′n| > 2(2n)1/2α} is finite almost surely as can be easily
seen, for instance, from the law of iterated logarithm.

This proves that the total number of collisions between the two random walkers on Comb(G)
is finite almost surely.

3 More Examples

Definition Given two graphs G,H, and a vertex v of H, define Combv(G,H) to be the
graph with vertex set V (G)× V (H) and edge set

{[(x,w), (x, z)] : [w, z] is an edge in H} ∪ {[(x,v), (y,v)] : [x, y] is an edge in G} .

When H = Z (and without loss of generality v = 0), this clearly reduces to Comb(G).

If G,H are recurrent, and v is a vertex of H, then Combv(G,H) is also obviously recurrent.
When H = Z2, we take v = (0, 0) and drop the subscript v in Combv(G,H).

Theorem 3.1 LetG be any recurrent infinite graph with constant vertex degree. Then Comb(G,Z2)
has the finite collision property.
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Proof As the proof is very similar to that of Theorem 1.1 (the difference is in the estimates)
we shall only briefly sketch the main steps.

For ` ≥ 1, let B` = {(x, y) ∈ Z2 : ` ≤ max{|x|, |y|} ≤ 2`} be the annulus of radii ` and 2`.
Then we define

Zn,` = |{(N,L) : n ≤ N ≤ 2n,L ∈ B` and XN = YN = (v, L) for some v ∈ G}|.

Then define An,` and Wn,` as before. Then analogously to Lemma 2.1 and Lemma 2.2 we have
the following lemma.

Lemma 3.2 With the above definitions,

• E [Wn,`] ≤ C1
`2

n
√

log(n)
∀1 ≤ `, n.

• E [Wn,`|An,`] ≥ C2 log(`) for 1 ≤ ` ≤ n.

Proof (Lemma 3.2) The upper bound for E [Wn,`] can be proved along the same lines as
Lemma 2.1. First we prove

P [Xn = Yn = (v, L) for some v ∈ G] ≤ C

n2
√

log(n)
. (13)

All the steps go through without change till (6). Moreover, the terms with Rn = 0 or Rn ≥ n
4

etc can be shown to be of lower order in the same manner. (To bound the terms with {Rn = 0},
use the fact that for simple random walk in the plane, P[Hn = 0] ≤ C

logn . See Erdős and

Taylor [1].) Only note that in Z2 the n-step transition probabilities are bounded by Cn−1.
The dominant term is

E

[

1(Vn = V ′n = L;Rn +R′n > 0)
√

(Rn ∧ n
2 ) + (R′n ∧ n

2 )

]

,

where the notations are as before (now V, V ′ are random walks on Z2 instead of Z).

For simple random walk in the plane P[Hn = k] ≤ C
logn ∀n, k (Hn is the number of returns to

origin by time n. See Erdős and Taylor [1]). Using this and the bound (7) for i.i.d. Geometric
variables, we get the bound (13). In Wn,` we are counting (up to constants) n steps and `2

sites, and thus the upper bound for E [Wn,`] follows.

The lower bound for E [Wn,`|An,`] is even easier. Referring back to the proof of Lemma 2.2,
a lower bound can be obtained by counting only those meetings that occur for a duration of
2n and before one of the two walkers goes a distance of `/2 from the meeting point (that is
assured by An,`). Since at least `/2 steps are needed to go a distance `/2, if 4n > `,

E [Wn,`|An,`] ≥
`/2
∑

k=1

P[Uk = Vk] U, V are SRWs on Z2

≥
`/2
∑

k=1

C ′

k
≥ C2 log(`).

This completes the proof of Lemma 3.2.
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From Lemma 3.2 we get

P [An,`] ≤ E[Wn,`]

E[Wn,`|An,`]

≤ C
`2

n
√

log(n) log(`)
for 2 ≤ ` < 4n.

Now we let n, ` run over powers of 2 but only over pairs for which 2 ≤ ` ≤ √
n(log(n))1/8

(trivially the above bound for P[An,`] holds for these values of n, `). Here log denotes logarithm
to base 2. Then

∞
∑

r=1

r
2
+ 1

8
log(r)
∑

k=1

P[A2r,2k ] ≤
∞
∑

r=1

r
2
+ 1

8
log(r)
∑

k=1

C
22k

2r
√
rk

≤
∞
∑

r=1

C0

r5/4

< ∞,

where, in the penultimate line, we have used the following easily checked fact:

n
∑

k=1

4k

k
≤ C

4n

n

for some constant C not depending on n.
This proves that almost surely only finitely many of the events A2r,2k with k ≤ r

2 + 1
8 log(r)

occur.(The cases ` = 0, 1 are taken care of directly by (13).) However, as before, let-

ting Vn = (V
(1)
n , V

(2)
n ) and similarly for V ′, we observe that {n : max{|V (1)

n |, |V (2)
n |} >√

n(log(n))1/8 or max{|V
′(1)
n |, |V

′(2)
n |} > √

n(log(n))1/8} is finite almost surely, as shown by
the law of iterated logarithm.

4 Questions

• Is it true for any two infinite recurrent graphs G,H and any vertex v ∈ H that
Combv(G,H) has the finite collision property?

• If Hn is a sequence of finite graphs then the graph obtained by attaching Hn to the
vertex n of Z gives a comb-like structure similar to the examples given in this paper.
This leads us to the following questions.

– Do trees in the uniform and minimum spanning forests on Zd have the finite collision
property? For definitions and properties of Uniform and Minimal Spanning forests
see Lyons and Peres [6].

– Does a critical Galton-Watson tree conditioned to survive have the same property
? (Assume that the offpring distribution has finite variance.) This conditioning on
an event of zero probability can be made precise easily; see Kesten [4].

The reason for expecting such behavior is that these trees are known to be “one-ended”,
meaning that they have the comb-like structure described above (although the “back-
bone” extends infinitely in only one direction).
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• Does the incipient infinite cluster in Z2 (this is the cluster containing the origin in
bond percolation on Z2 at criticality, conditioned to be infinite) have the finite collision
property? It is known that almost surely there is no infinite cluster in Z2 at criticality.
However, the incipient infinite cluster can still be defined. See Kesten [3].

Acknowledgement: We thank Jeffrey Steif and Nina Gantert for encouragement.
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